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Abstract
Magnetic skyrmions are potential candidates for neuromorphic computing due to their inherent
topologically stable particle-like behavior, low driving current density, and nanoscale size.
Antiferromagnetic skyrmions are favored as they can be driven parallel to in-plane electrical currents
as opposed to ferromagnetic skyrmions which exhibit the skyrmion Hall effect and eventually cause
their annihilation at the edge of nanotracks. In this paper, an antiferromagnetic skyrmion based
artificial neuron device consisting of a magnetic anisotropy barrier on a nanotrack is proposed. It
exploits inter-skyrmion repulsion, mimicking the integrate-fire (IF) functionality of a biological
neuron. The device threshold represented by the maximum number of skyrmions that can be pinned
by the barrier can be tuned based on the particular current density employed on the nanotrack. The
corresponding neuron spiking event occurs when a skyrmion overcomes the barrier. By raising the
device threshold, lowering the barrier width and height, the operating current density of the device
can be decreased to further enhance its energy efficiency. The proposed device paves the way for
developing energy-efficient neuromorphic computing in antiferromagnetic spintronics.
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1. Introduction

Neuromorphic computing paradigm mimics the neurobiology
present in the biological nervous system. The computing com-
ponents of the human brain are neurons whose interconnections
are known as synapses. Neuromorphic computing based on
artificial neural network (ANN) has certain advantages over Von
Neumann architecture based classical computing with regard to
adaptability, massive parallelism, energy efficiency [1] and,
tolerance to fault and variation [2]. With the proven success and
effectiveness of neuromorphic computations in solving many
problems, there has been a drive to build artificial neurons and
synapses on a chip dedicated to performing these computations
effectively. In past decades, neuromorphic computing was
implemented using complementary metal oxide semiconductor
(CMOS) technology [3–6]. But, the discrepancy between

computing units of the brain and architecture of CMOS tran-
sistors leads to higher energy and resource requirements for
CMOS based neuromorphic computing [7]. Bridging this gap
requires alternate devices where neural and synaptic function-
ality corresponds to the device’s operation. In recent decades,
advances have been made in nanotechnology research with the
introduction of spintronic devices for implementing low power
and high-density neuromorphic computing [8–11].

A magnetic spin texture, skyrmions, are topologically stable
field configurations that appear as particle-like solutions [12].
Magnetic skyrmions emanate from the chiral interactions which
are induced due to lack of inversion symmetry in crystal lattices
and are known as Dzyaloshinskii–Moriya interactions (DMI)
[13]. DMI energy is depicted asHDM=−D12. (S1XS2), where S1
and S2 are two atomic spins and D12 is the DMI vector between
these two spins. There are two main types of topologically
identical magnetic skyrmions where spins at its periphery are in
the opposite direction to the spins present at the center [14].
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Bloch skyrmions exist in the systems with bulk DMI. Mean-
while, Neel skyrmion is produced by the interfacial DMI. In
contrast to magnetic bubbles, micrometer-sized magnetic
domains which are stabilized by the dipole interactions [15],
magnetic skyrmions have a much lower size (1–100 nm) [15, 16]
and improved stability in virtue of DMI [13]. Additionally, the
driving current density for skyrmions (order of 106 Am−2) is
lower than that for the magnetic domains (1011 Am−2) [12].
Skyrmions have potentially easy control of their motion by ultra-
low current densities making them remarkable candidates for
future high-density data storage and information processing
devices [12, 16–22]. In 2016, Woo et al demonstrated the sta-
bilization of skyrmions and their current-driven motion in fer-
romagnets. The motion of a train of individual skyrmions at
speeds exceeding 100m s−1 by the current density of 5×1011 A
m−2 is reported [16]. But, the motion of magnetic skyrmions in
ferromagnetic (FM) materials uphold a complication of exhibit-
ing a Magnus force originating from skyrmion topology acting
perpendicular to the applied current [23]. The transverse motion
of skyrmions to the current direction is known as the skyrmion
hall effect. This leads to the risk of annihilation of FM skyrmions
at the nanotrack edge. Besides, FM skyrmions are also suscep-
tible to stray fields [24, 25]. Regardless of interesting physics
around the Magnus effect, for many applications, zero skyrmion
hall angle is preferred for high-speed applications. In anti-
ferromagnetic skyrmion (AFM), the effective skyrmion hall
angle is zero as equal and opposite forces are acting on the two
sublattices of the AFM skyrmion resulting in a straight trajectory
of the AFM skyrmion along with the applied current [23]. In
contrast to FM skyrmion, AFMs are insensitive to stray fields.
AFM skyrmions have highly increased velocity by the order of
102m s−1 as compared to FM skyrmion [25]. A convincing
interest behind investigating skyrmions in antiferromagnets is due
to DMI which is crucial for the creation of skyrmion [25], is
more commonly found in AFM rather than FM [23]. This brings
about AFM skyrmions as an ideal information carrier owing to a
favorable candidate for spintronic applications.

In this work, an AFM skyrmion based artificial neuron
device is proposed. It exploits inter-skyrmion repulsion on a
nanotrack with a high energy barrier. We first describe the
behavior of the biological neuron [26] as well as analogous
prerequisites of the suggested artificial neuron. Then, we
show that the skyrmion–skyrmion repulsion [27] can be
explored to implement an integrate-fire (IF) spiking neuron
functionality with a tunable number of skyrmions acting like
the analog membrane potential of the biological neuron. The
IF functionality and related interpretations of the proposed
AFM skyrmionic neuron device is demonstrated using
micromagnetic simulations.

Skyrmions based devices being nanoscale size, robust
and non-volatile are compatible with CMOS [28]. Therefore,
our study facilitates the design and integration of magnetic
skyrmions based devices with conventional CMOS circuitry
and will encourage further experimental studies in this
research direction [29–32]. Furthermore, future work on
integrating the proposed neuron device with its synaptic
device, and CMOS circuitry can form AFM skyrmion-based
neuromorphic system. These systems are very energy efficient

and fast [33], and can be implemented for image processing
applications.

2. Methods

The micromagnetic simulations were performed using the
MuMax3 software [34–36]. The magnetization dynamics is
computed using Landau–Lifshitz–Gilbertz (LLG) equation [37].
In the simulations, the nanostripe is set to be 2048×240×
1 nm3. A discretization of 0.418×0.418×0.418 nm3 of each
cell is used. The proposed AFM skyrmion-based artificial neuron
device was simulated by solving LLG equation by using the
material parameters (see table 1) for KMnF3 [23]. For Ku

=1.4×105 J m−3 in the energy barrier region, the width of the
barrier is varied in a step size of 8.36 nm. For the energy barrier
width of 100.32 nm, the Ku of the barrier region is varied in a
step of 0.5×105 J m−3. These variations in the device are
carried out to achieve the operation of the proposed device dis-
cussed in section 4.

3. Analogy between a biological neuron and the
proposed artificial neuron device

The basic component of the human brain is a neuron. A
neuron has a cell body known as soma and has root-like
extensions called dendrites [38]. Here, we describe the bio-
logical neural network (figure 1(a)) as well as its corresp-
onding ANN schematic (figure 1(b)). The biological neural
network consists of a massive number of neurons (approxi-
mately 1011) that are interconnected to each other via junc-
tions known as synapses (approximately 1015) [38, 39]. The
most salient feature of neural function is the action potential.

Integrate-and-fire neuron is one of the earliest neuron
model [40–43]. Ion current through the cell membrane occurs
when neurotransmitters activate the ion channels in the cell.
This current is a time-dependent current represented as I (t).
The insulating membrane of the cell has the charge ion
concentration that determines the capacitance C. A neuron
responds to the signal with a voltage spike called an action
potential represented as V. A time representation of the neu-
ron model is =I t C dV dtm m( ) / [44]. Whenever an input
current is applied, membrane potential increases with respect
to time until it reaches a certain threshold. After that, a neuron

Table 1. Key parameters in micromagnetic simulations.

Parameters Values

Saturation magnetization MS −375 kA m−1

Exchange stiffness A −6.59×10−12 J m−1

Gilbert damping α 0.005
Spin polarization rate P 0.4
Magnetic anisotropy (on nanotrack) 1.16 × 105 J m−3

Non-adiabatic STT β 0.5
Interfacial DMI Dind 1.2×10−3 J m−3

Elementary charge e 1.6×10−19 C
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will spike an output signal and then the voltage is reset to its
resting potential.

Similar to the biological neural networks, the ANN is
presented as a chain of spikes i.e. input signals from the
neurons and pass the output signal to neurons connected to it
based on the firing pattern specified to that particular neuron.
Figure 1(b) illustrates the primary neuronal function. The
equation å=Y t f w t I ti i( ) ( ( ) ( )) defines the time-dependent
neuron spike where f is the activation function such as sig-
moid, linear, step, etc wi (t) and the Ii (t) represents the
synaptic weight and the input spikes of the ith synapse,
respectively [45]. When the neuron receives the spikes from
other associated neurons, there is a combination of membrane
potential. However, only when the neuron membrane poten-
tial surpasses the specific threshold, the neuron will fire an
output signal.

The biological neuron’s integrate and fire functionality is
analogously described with the proposed AFM skyrmion-
based artificial neuron device as shown in figure 2. In this
device, the nucleation of skyrmions on the nanotrack is ana-
logous to the input spikes of the neuron. The number of
skyrmions present on the nanotrack is analogous to the
membrane potential of the biological neuron. A pre-
determined maximum number of skyrmions on the track is
analogous to the threshold of the biological neuron. Once the
threshold is reached, the device will trigger an output signal
and reset. The snapshots of micromagnetic simulations in
figure 2 show the IF behavior of the proposed device. Here,
the AFM skyrmion is assumed to be nucleated with the 2 ns
long pulse [25]. As the nucleation time for the skyrmion is
non-zero, the delay is shown between the input spike and the

number of skyrmions curve and, barrier cross delay is shown
between the input spike and the output spike.

4. AFM skyrmion based artificial neuron device

4.1. Schematic of the proposed device

Figure 3 represents the schematic of the proposed AFM
skyrmion-based artificial neuron device. This device has three
primary components namely, nucleation point, barrier region,
and a detection region. A nucleation point is a point where the
skyrmions are initially created. The barrier region is the
region with a higher magnetic anisotropy magnitude than
other parts of nanotrack. The detection region is a region
where the skyrmions are observed once they overcome the
barrier region. The whole nanotrack has a fixed length of
856.06 nm and a width of 100.32 nm. A detection region has
a length of about 277.55 nm.

4.2. Operation of the proposed device

A range of a number of skyrmions can be created on a
nanotrack limited by the size of the device. An in-plane
driving current is employed to drive a single skyrmion along
the nanotrack from the nucleation point towards the detection
region. The skyrmion’s ability to overcome the barrier is
determined by an analysis of the forces acting on the sky-
rmions at the barrier. A repulsion force by the barrier acts on
the skyrmion, opposing the driving force induced by the

Figure 1. (a) Illustration of a biological neuron and the key
components involved in information processing. (b) Corresponding
artificial neural network.

Figure 2. Micromagnetic simulation of proposed AFM skyrmion
based neuron device with IF functionality.

Figure 3. Schematic of proposed artificial neuron device.
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current. With an insufficient current, the skyrmion will be
pinned at the barrier. Hence, an additional force is required to
make the skyrmion overcome the barrier region. Thus, by
nucleating additional skyrmions to form a chain of skyrmions,
the first skyrmion experiences an additional force due to
skyrmion-skyrmion repulsion acting between them. With a
sufficient number of skyrmions, the first skyrmion is pushed
past the barrier region and into the detection region. Once the
skyrmion overcomes the barrier, the neuron fires an output
signal and then reset it again. Using a triangular notch like
structure at the ends of the nanotrack, the device can be reset
so the skyrmions can be easily annihilated at the end.

5. Results and discussion

The threshold current density of the device with respect to the
energy barrier width on the nanotrack is shown in figure 4. At
first, it is observed that there is a smooth increase in the threshold
current density for small barrier widths. Afterward, it gets satu-
rated for large barrier width for any number of skyrmions on the
track. This dependency of threshold current density on width is
due to the finite skyrmion size. As the diameter of a magnetic
skyrmion is finite, there is a dependency of repulsion force
exerted by the barrier on its barrier width as shown by the inset of
figure 4. The pink dotted line in figure 4 represents the skyrmion
diameter on the nanotrack to portray the key idea intended here,
which is the repulsion force becomes dependent on the barrier
width on the scale of the size of skyrmion.

For current density less than 3.5×1011 A m−2, a single
skyrmion on the track is not able to overcome the energy
barrier width of 16.72 nm. By employing the chain of two
skyrmions, the skyrmion is now able to overcome the barrier
by the effect of skyrmion-skyrmion repulsion. However, for

the chain of two skyrmions (with operating current density
less than 2.4×1011 A m−2 and energy barrier of 41.80 nm),
it will not overcome the barrier. The additional repulsive
forces between the three skyrmions is a solution to force the
skyrmion beyond the barrier.

Assuming the driving force due to current on skyrmions are
constant, repulsion forces between the skyrmions are equal and
opposite, and constant repulsive force exerted by the barrier. This
accounts for the estimated value to be half (3.75×1011 A m−2)
and one-third (2.5×1011 A m−2) for two and three skyrmions,
respectively as compared to the single skyrmion on a track. It is

Figure 4. Plot of the threshold current density against the energy
barrier width for devices with 1, 2, and 3 skyrmions. Here, Ns
denotes the number of skyrmions on the track.

Figure 5. Plot of the threshold current density against the difference
in anisotropy magnitude energy barrier and the nanotrack for devices
with 1, 2, and 3 skyrmions. Here, Ns denotes the number of
skyrmions on the track.

Figure 6. Variation of repulsion force between the two skyrmions
and the skyrmion diameter with respect to the separation distance
between the two skyrmions.
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noted that the current densities are marginally less (i.e.
3.5×1011 A m−2 and 2.4×1011 A m−2) than the above-
mentioned values. The decrease in threshold current density is
likely to be due to a decrease in repulsive force by the barrier on
the skyrmion as a result of a decrease in skyrmion diameter due
to skyrmion-skyrmion repulsion. It is observed from figure 6 that
the increased repulsive force between the two skyrmions result in
decrease in the diameter of the skyrmion. Thus, tuning the device
threshold with a greater number of skyrmions requires less cur-
rent density.

The threshold current density with respect to magnetic
anisotropy (Ku) in the energy barrier region is obtained for a
fixed energy barrier width of 25.08 nm, as presented in
figure 5. The threshold current density is computed for the
range of dKu from 14 to 54 kJ m−3, where dKu is the dif-
ference in the Ku magnitude in the energy barrier region and
that in the nanotrack. As observed in figure 5, there is a less
than linear increase in the threshold current density with
respect to the increase in Ku value of the high energy barrier
region. The deviation from linearity at large anisotropy dif-
ference is more apparent for the case of 2 and 3 skyrmions.

The relation between the maximum repulsive force acting
on the skyrmion due to the barrier against the change in dKu is
illustrated in the inset of figure 5. The result supports the
observed relation between the threshold current density and dKu.

Figure 6 shows the repulsion force as well as skyrmion
diameter versus the separation between the two skyrmions. The
deformation in skyrmion size due to skyrmion-skyrmion
repulsion is very much significant. It can be seen that the
repulsion force between the two skyrmions decreases drama-
tically from 0.017 to 0.0004 J m−1 with an increase in inter-
skyrmion distance from 74 to 124 nm. At the same time, sky-
rmion diameter is thus increased from 36.5 to 50 nm due to the
repulsive forces between the two skyrmions. It can be observed
that skyrmion-skyrmion repulsion is negligible for much higher
inter-skyrmion separation as represented by F=0 dotted line,
thereby, keeping the skyrmion diameter constant.

The energy consumption of the proposed device is esti-
mated to be in ∼femto Joules for the driving current density
of order 1011 [46, 47]. The maximum transition time for the
skyrmion to fire is in the range ∼2–2.5 ns depending upon the
barrier width and dKu.

In this section, we have explored the key device para-
meters and forces involved in the device’s operation. Here, we
provide an overview for optimizing the device for desired use.
Firstly, as the device operation depends on the number of
skyrmion on the nanotrack, its dimensions must be sufficient to

contain the maximum desired threshold number of skyrmions.
Thereafter, the device’s threshold may be lowered as required
by operating at higher current density. On the other hand, the
magnetic anisotropy barrier further enhances the tunability of
the device to adjust the operating current density and optimize
its power efficiency. At last, we have shown the comparision of
CMOS and skyrmion-based neuron devices in table 2.

6. Conclusion

Most of the efforts have been targeted towards neuromorphic
computing using FM skyrmions. However, FM skyrmions
inherently have several limitations contrary to an AFM sky-
rmion that does not has stray fields and follows a straight
trajectory due to mitigation of Magnus force. Hence, an
antiferromagnetic skyrmion-based artificial neuron device is
proposed based on the skyrmion-skyrmion repulsion effect.
An integrate and fire (IF) functionality of the artificial neuron
is demonstrated. The key device parameters and interactions
that include inter-skyrmion repulsion on a nanotrack and
skyrmion-barrier repulsion is investigated in order to show
the tunability of the device. Furthermore, it is observed that
these interactions account for the marginally lesser current
densities for two and three skyrmions than the estimated
values. The skyrmion compression is also observed, with an
increase in inter-skyrmion repulsion. This device offers very
low energy consumption and high processing speed, making
it a potential candidate for the implementation of future
skyrmionic devices in neuromorphic computing systems.
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Table 2. Comparison of different neuron devices.

S. no. Neuron device Energy consumption Speed Area

1 CMOS based neurons [48–51] Low (in pJ/spike) Relatively low
(in micro seconds)

Relatively high

2 FM skyrmion based neurons
[26, 46, 47, 52, 53]

Low (in fJ/spike) High Low

3 AFM skyrmion based artificial
neuron device (This work)

Estimated energy consumption
is ∼fJ with current density
of order 1011 A m−2 [46, 47]

High (2–2.5 ns) Small size due to small
skyrmion diameter (1–100 nm)
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