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ABSTRACT

In this review, a comprehensive survey of different oxide-based resistive ran-

dom-access memories (RRAMs) for neuromorphic computing is provided. We

begin with the history of RRAM development, physical mechanism of con-

duction, fundamental of neuromorphic computing, followed by a review of a

variety of RRAM oxide materials (PCMO, HfOx, TaOx, TiOx, NiOx, etc.) with a

focus on their application for neuromorphic computing. Our goal is to give a

broad review of oxide-based RRAM materials that can be adapted to neuro-

morphic computing and to help further ongoing research in the field.

Introduction

Resistive random-access memory (RRAM) utilizes

the resistive switching (RS) phenomena to store

information, which offers new types of devices that

can outstrip the performance of traditional semicon-

ductor electronics devices. Compared to charge-

based memory devices, RRAM stands out due to its

smaller cell size 4F2, multi-bit capability as well as

energy per bit (* fJ/bit). The first report of resistive

switching phenomena is by Hickmott [1], where

resistive switching is found on SiOx, Al2O3, Ta2O5,

ZrO2 and TiO2. However, it was only after 38 years

that the heat of RRAM research was reawakened

with the observation of resistive switching behavior

in magnetoresistive films from University of Houston

[2]. Two years later, 64-bit RRAM array using Pr0.7
Ca0.3MnO3 via a 500-nm complementary metal oxide

semiconductor (CMOS) process was reported by

Zhuang [3]. Between 2004 and 2007, Samsung and

Infineon [4] made a significant progress on RRAM

development with the first 3D RRAM array demon-

strated in 2007. The concept of RRAM used for neural

network and logic circuit was first published in Na-

ture by HP in 2008. The paper titled ‘‘The Missing

Memristor Found’’ [5] triggered another heat of

RRAM development. In the next 9 years, great

achievement had been witnessed from industries and

academies. The successful fabrication of 64-MB

RRAM test chip, 32-Gbit bilayer cross-point RRAM,

27-nm 16-Gbit Cu-based CBRRAM test chip and

4-layer 3D vertical self-selective RRAM array was
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announced by Unity [6], SanDisk/Toshiba [7],

Micron/Sony [8] and IMECAS [9], respectively. In

2017, TSMC [10] announced its new plan to start

producing embedded RRAM chips in 2019 using a

22-nm process. Figure 1 shows the historical timeline

of important events on RRAM development in the

last half-century.

RRAM technology is compatible to the conven-

tional CMOS in a simple way [11], and the RRAM

embedded system could be integrated into IoTs,

automobile and infotainment platforms [12, 13]. In

addition to the memory hierarchy, RRAM has

demonstrated its application in the low-power com-

puting as non-volatile logic circuits and

neuromorphic computing as a synaptic device.

Recent reviews by H.S.P. Wong, Yu, S. M. and Aki-

naga, H [14–16] gave excellent and comprehensive

overviews of RRAM physical mechanism, materials,

performance and applications. Here, we limit this

review to the oxide-based RRAM materials where

neuromorphic computing applications have been

demonstrated. At first, fundamentals of RRAM and

neuromorphic computing will be discussed. There-

after, we will elaborate more on these oxide-based

RRAM devices (PCMO, HfOx, TaOx, TiOx, etc.) used

for neuromorphic computing application. This

review will end with a conclusion and outlook.

Figure 1 Historical timeline

of RRAM development from

1962 to 2017 [1–10].
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RRAM design and physical mechanism

A typical RRAM structure consists of three layers of

materials, namely (metal–insulator–metal) MIM

structure [17], which is a resistive oxide layer sand-

wiched between two electrodes. The resistance of the

device can be modulated by applying an external

electric field across the electrodes. RRAM devices

work based on chemical redox reactions, i.e., oxida-

tion and reduction reactions. In memory storage,

there are binary states, ‘‘0’’ and ‘‘1’’. ‘‘0’’ represents

data that is not stored, while ‘‘1’’ represents data that

is stored. In RRAMs, redox reactions form a filament

or bridge across the two metal layers, within the

insulator. When a filament is created, an electrically

conductive is formed between the two metal layers.

Hence, a low-resistance state (LRS) occurs when a

filament is formed, while a high-resistance state

(HRS) occurs when a filament is not formed or rup-

tured. When a filament is formed, it would be a ‘‘1’’

state where one bit of information is stored and when

a filament is ruptured, it would be a ‘‘0’’ state [18]

(Fig. 2). A typical hysteretic current–voltage (I–

V) characteristics in a metal–insulator–metal (MIM)

structure are shown in Fig. 3. The switching from

HRS to LRS is called the SET process, while the

switching from LRS to HRS is called RESET process.

In most situations, a forming voltage larger than the

SET voltage is needed for the pristine device to trig-

ger the resistive switching behaviors for the subse-

quent cycles. The SET and RESET processes can occur

at the same polarity of the applied voltage as shown

in Fig. 3a which is known as unipolar switching.

Similarly, bipolar switching refers to the switching

behaviors occurring at different polarities of voltage

(Fig. 3b).

The MIM stack of RRAM can be broadly classified

as symmetric and asymmetric structures. A sym-

metric MIM structure mainly exhibits unipolar

switching behavior, while a asymmetric structure

mainly exhibits bipolar switching behavior. The

mechanism of resistive switching behavior can

mainly be classified into the electrochemical metal-

lization effect (ECM) and the valence change memory

effect (VCM) [19]. ECM and VCM are typically

observed in RRAMs with one active metal electrode

(Cu, Ag, Ni) and one inert metal electrode (Pt, Ru, Au

or Ir). In ECM, the conductive path of the switching

layer is formed via metal cations of the electro-

chemically active metal electrode under an external

electric field. On the other hand, VCM works based

on the migration of anions where oxygen vacancies

contribute to the conductive path within the oxide

layer. In VCM, it typically requires an oxygen scav-

enging electrode to facilitate anionic movement

between the active and inert electrodes. ECM and

VCM are based on redox reactions of oxidation and

reduction. RRAM devices with switching layer

doped with Ti [20] or Ge [21] had been reported to

have a forming-free property where their initial

resistance state (IRS) is similar to the high-resistance

state (HRS). In addition, several other advantages of

doping in the RRAM fabrication process to improve

uniformity and frustration had been reported [22].

Besides the single switching layer, numerous inves-

tigations had been conducted on double and multiple

switching layers. It has been reported that a switch-

ing layer consisting of low-resistance and high-re-

sistance layers can reduce the randomness of resistive

switching. Additionally, multi-layer structures have

been promising for the multi-level storage function

[23, 24]. Table 1 summarizes the details of the RRAM

stack, electrodes and switching layers.

The conduction mechanism in oxide RRAM can be

analyzed by fitting the I–V characteristic of current

conduction in the HRS and the LRS. Various resistive

switching mechanisms have been proposed to

explain and model RRAM conduction behavior. They

include the Pool–Frenkel emission (P–F emission),

SCLC (spaced charge limited current), formation and

rupture of conductive filaments (CFs), electrode-

limited conduction (Table 2) [42]. Although the

underlying physical mechanisms are material/elec-

trode specific and not well understood, the

Figure 2 A schematic diagram of the mechanism of resistive

switching effect in RRAM cell, ‘‘1’’ state when a filament is

formed and ‘‘0’’ state when a filament is ruptured.
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conductive filament mechanism applies to a large

majority of binary oxide unipolar or bipolar RRAMs.

Neuromorphic computing

Comparing with traditional computational architec-

ture, the human brain working system has major

advantages in the following aspects. The energy

efficiency of the human brain (10 watts) [15] is

remarkably superior, reaching 5 orders of magnitude

lower than supercomputers. The human brain can

also adapt to different environments and is able to

perform complex processing. The advancement of

studies on the human brain system has led to a new

disruptive technology neuromorphic computing.

This technology imitates how the brain is working in

the design and implementation of the computational

system.

The ultrahigh energy efficiency of the human brain

is derived from its low-power neurons and spike-

based computation, which is mainly realized by four

components (Fig. 4). Neuron bodies function as an

integrator and a device for threshold spiking. In

order to implement a neuromorphic system, a

capacitor is used to mimic neuron bodies in neuro-

morphic architecture. Axons work as information

transmission connection which could be mimicked a

long wire. The signal input from multiple neurons to

a single neuron is provided by dendrite, a short wire

which plays the role of dendrite in the neuromorphic

system. The synapse is the most investigated com-

ponent that has been constructed so far, and it pro-

vides dynamical interconnections between neurons

by switching and plasticity. Memristor is the device

component that works as a substitution to a synapse.

In the neuroscience, synaptic weight of synapse refers

to the strength or amplitude of a connection between

two neurons which is mainly determined by the

amount of neurotransmitter released and absorbed.

The synaptic plasticity is the increase or decrease of

synaptic weight over the time. Short-term synaptic

plasticity acts on a timescale of tens of milliseconds to

a few minutes, while long-term plasticity lasts from

minutes to hours. Memristors are electrical devices

which can mimic the synapse. The resistance of

memristors, which functions as the synaptic weight

in the neuroscience, can be tuned as response to a

periodic voltage (or current) input, and the resistance

state can be retained when the power is turned off.

RRAM is one form of memristor, and its resistance

(synaptic weight) can be manipulated between high

and low resistive states by deliberately applied volt-

age, which causes the medium to acquire microscopic

conductive paths called filament. In addition, it is

possible to reproduce synaptic plasticity with RRAM

memory run by specific coding schemes. In the

human brain, 100 billion neurons are connected to

one another by 100 trillion synapses [43]. The neu-

romorphic computing processor consists of a vast

array of electronic spiking neurons and multi-bit

synapses realized using fully interconnected crossbar

memories.

There is a very large amount of fascinating work

performed to develop memristors for neuromorphic

systems. So far, several types of memristors have

been investigated including but not limited to RRAM

[44–49], phase change memory [50–61], spin device

[62–68], floating gate transistors [69–76] and an opti-

cal device [77–81]. Among them, RRAM is an excel-

lent memristor for non-volatile synapse application

as it enables higher density, scalability and efficient

Figure 3 Typical hysteretic

current–voltage (I–

V) characteristics in metal–

insulator–metal (MIM)

structures a unipolar switching

and b bipolar switching.
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chip design. When compared with other types of

synaptic device, RRAM possesses the advantages of

high endurance that FLASH memories do not offer,

lower programming energy and smaller cell size than

MRAM. In addition, the non-volatile property of

RRAM outweighs the traditional DRAM which

requires constant recharging [82–87]. Table 3 lists out

some of the leading institutions and industries using

Table 1 Summary of RRAM stack, electrodes and switching layer

Structures Switching

behavior

Model

RRAM stack

Symmetric

and

asymmetric

Symmetric structure:

(e.g., Pt/NiO/Pt [25], Pt/TiO2/Pt [26], Pt/

ZrO2/Pt [27], Pt/HfO2/Pt [28])

Mainly

unipolar

switching

Thermal dissolution model:

Oxygen ions accumulated near the anode during the SET.

The Joule heating activates O2- to combine with oxygen

vacancies during the RESET and rupture of conductive

filaments (CFs)

Asymmetric structure:

(e.g., Pt/TiO2/TiN [29], TiN/ZnO/Pt [30],

TiN/HfO2/Pt [31], Pt/NiO/Cu [32], Cu/

La2O3/Pt [33])

Mainly

bipolar

switching

Ionic migration model:

Oxide interfacial layer formation between electrode and

oxide acts as oxygen diffusion barrier.

Structures Mechanism Advantages

RRAM electrodes

Active and inert metal

electrode

Active metal electrode:

Ti, Al, Ag, Cu, Ni, TiN, TaN,

ZrNx, ITO

ECM

VCM

Mainly bipolar

switching

Active ? inert electrodes in RRAM exhibit better endurance

and longer retention time

Inert metal electrode:

Pt, Au, Ru, Pd

VCM

Mainly unipolar

switching

Novel electrodes:

CNT [34, 35] n ? Si [36]

graphene [37]

n ? -Si: self-rectifying property which is capable of

alleviating cross talk issues

Graphene and carbon nanotube electrodes: ultradense

memories.

Structures Mechanism Advantages

RRAM switching layer

Doping Dopants: Ti [20], Ge [21] Forming-free: Dopants diffuse into oxide layer

and oxygen vacancies are increased

Good data retention, potential multi-bit operation,

highly scalable property and fast switching

speed

Better uniformity (temporal fluctuations) (cycle

to cycle) and spatial fluctuations (device to

device)

Bilayer One layer with lower

resistivity and one with

higher resistivity

E.g., TMO1/TMO2 [24],

Ni/GeOx/HfOx/TaN [38],

MoOx/GdOx [39]

Resistive switching occurs at higher resistivity

layer, and the lower resistivity layer can

improve the resistance of the ON state

Low power consumption

Lower RESET current

Better uniformity (diffusion of metal ions from

the lower resistivity to the higher resistivity

layer. This stabilizes the CFs to reduce the

randomness of resistive switching (RS)

Multi-

layer

E.g., Pt/HfOx/TiOx/HfOx/

TiOx/TiN [40]., Pt/Ta2O5/

TiOxNy/TiN/Ta5/Pt [41]

Multi-level storage function

8724 J Mater Sci (2018) 53:8720–8746

Author's personal copy



resistive memories as synaptic devices. Phase change

memory (PCM) has shown great potential for neu-

romorphic computing in the Synapse project per-

formed by leading researchers from IBM (TrueNorth)

[88]. However, the greatest drawback is its high

power consumption. RRAM is touted as a possible

solution and has been studied by Nanoelectronics

and Nanotechnology Research Group from Stanford

University and NanoST laboratory from National

Chiao Tung University [89–92]. The results showed

that RRAM possesses similar performance as that of

PCRAM and consumes less power to operate artifi-

cial synapse [93–95]. Since then, RRAM has attracted

massive attention from numerous academic institu-

tions. From Fig. 5, the number of publications on

RRAM has increased by 14 times in the last decade.

Among these publications, the proportion of papers

demonstrating neuromorphic computing applica-

tions has increased every year since 2010. In 2016,

nearly 11% of papers presented RRAM’s applications

in the neuromorphic system. In general, most of

studies on RRAM involve oxide materials. Oxide-

based RRAM is attractive as the underlying metal

insulator–metal structure is simple, compact and

CMOS-compatible. Most importantly, the multi-level

behavior needed to imitate adaptive synaptic changes

Figure 4 Interconnectivity in neuronal circuit.

Table 3 Active players in the resistive memory of the synaptic devices (with to Ref. [97])

Project performer Synaptic device Device structure Scale Synaptic characteristics Application

GIST RRAM TiOx/HfOx Unit cell Multi-level cell Visual cortex

LETI CBRAM Ag/GeS2 8 9 8 1T1R N/A Human Cochlea and Retina

Stanford PCM GST 10 9 10 1T1R Yes Pattern recognition

POSTCH RRAM Pr1-xCaxMnO3 11 k Array Yes Signal recognition

IBM PCM Ge2Sb2Te5 165 K Array N/A Pattern recognition

Table 2 Conduction mechanism analysis

Mechanism Remarks

P-F emission (field-assisted

thermal ionization)

Thermal excitation of electrons emits from traps into the conduction band of the dielectric.

In(1/V) - V1/2

SCLC (space charge limited

current)

When electric field is high, the current is dominated by the charge carrier injected from the electrode.

The current is only dependent on the mobility rather than the charge-carrier density.

I–V2

Conductive filament Formation and rupture of conductive filaments

I–V

Not proportional to electrode area

Electrode limited Relevant to electrode (materials, area)

Schottky emission Thermal excitation of electrons emits over the barrier into the conduction band of the dielectric.

Direct tunneling Electron tunnels from cathode to anode directly

Thin film thickness less than 3 nm

Fowler–Nordheim (F-N) tunneling Electron tunnel from cathode to conduction band directly

High voltage
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has been found in many oxide-based RRAM devices.

In addition, the energy per synaptic operation can be

made as low as sub-pJ and the programming current

can reach below 1 lA [96]. In this review, we will

focus on oxide-based RRAM memristor device as a

synapse in the neuromorphic system.

The basis of learning and formation of memory are

the modification of synapse connections as a result of

accumulated experience, the feature known as

synaptic plasticity. So far, synaptic plasticity had

been widely studied their correlation in learning and

memory [98–100]. Hebbin’s rule postulates that

changes at synapses within the brain underlie learn-

ing and memory, which was proposed by Donald

Hebb in 1949 [101]. It provides an algorithm to

update weight of neuronal connection within neural

network and a physiology-based model to reproduce

the activity-dependent features of synaptic plasticity.

In biology, excitatory and inhibitory postsynaptic

potentials are transmitted between neurons through

chemical and electrical messaging at synapses, driv-

ing the generation of the new action potentials

(spikes). In RRAM-based neuromorphic approaches,

the tunable resistive state of RRAM functions as

synaptic weight in the neuromorphic system. The

weight of synapse could be manipulated by changing

the resistance states in RRAM devices, which follows

the rule of spike-timing-dependent plasticity (STDP)

[102–104]. STDP is a form of synaptic plasticity that

adjusts the strength of the connection between the

presynaptic neuron and postsynaptic neuron based

on the relative timing of its output and input action

potentials (electric pulses). In the implementation of

STDP learning rule, it requires the adjustment of the

connection strength between pre- and postsynaptic

neurons. The process of adjusting the strength of

these interneural connections is known as synaptic

operation. The number of synaptic operations of a

neuromorphic chip is strongly dependent on the

intrinsic properties of the materials used as the

synapse. This will further determine the lifetime of

the chip or its availability for learning process. The

required cyclability (number of synaptic operations)

of the chip will depend on the expected lifetime and

operation frequency of the chip. If the chip is expec-

ted to be available for learning for about 10 years

under 100 Hz of operation frequency, the chip must

be able to execute at least 1010 synaptic operations.

RRAM device has been reported to achieve endur-

ance of as high as 1012; thus, it emerges as one of the

strongest candidates for the development of highly

reliable neuromorphic chip. The feasibility of RRAM

device for synapse applications was first demon-

strated in 2010 by Jo et al. [53]. According to the

experimental RRAM STDP curve as shown in Fig. 6,

conductance increases with the time delay when the

presynaptic spikes precede the postsynaptic spikes

(t\ 0). Conversely, the decrease of conductance

occurs when the postsynaptic spikes precede the

presynaptic spikes (t[ 0). In addition to the rise/fall

of synaptic weight, the change of synaptic weight

could also be either long term or short term. Upon

changing the spike rate, Ohno [105] demonstrated

both the long-term potentiation and short-term

potentiation in Ag2S-based RRAM device. Long-term

potentiation refers to the persistent increase in

synaptic strength which lasts minutes or more, while

short-term potentiation refers to the transiently

Figure 5 Publications per

year from 2007 to 2016. The

data is from the web of science

site (www.webofknowledge.

com). The search expression

for blue bars is Topic = ‘‘R-

RAM’’ or ‘‘RRAM’’ or ‘‘Re-

sistive random-access

memory’’. The data for red

bars are from subsequent

refined with expressions

Refine = ‘‘neuromorphic’’ or

‘‘synapse’’.
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enhancement of synaptic strength which acts on a

timescale of tens of milliseconds to a few minutes.

The results showed that the RRAM device exhibits

short-term potentiation behavior with the applied

pulse width at 0.5 s and interpulse delay at 20 s. As

shown in Fig. 7, the potentiation of synaptic weights

is volatile and no permanent change was observed

after nine pulses. However, when the interpulse

delay was reduced by 10 times, 6 pulses are sufficient

to induce the stable potentiation and permanent high

conduction state remains thereafter. In general, short-

term and long-term plasticity could be mimicked in

the single synapse by tuning the non-overlapping

spike rate. This synaptic plasticity plays a crucial role

in the way the brain implements learning and

memory. Therefore, the rule of STDP (Fig. 7) is con-

sidered as one implementation of Hebbian learning.

Oxide-based RRAM for neuromorphic
computing application

Resistive switching behavior had been observed in

many oxides, while most of them are transition

metals. Some of them had been explored for neuro-

morphic application and summarized in the periodic

table (Fig. 8). We selected PMCO, HfOx, TaOx, TiOx,

NiOx, AlOx, WOx and other oxides for discussion in

this article as their property and application for

neuromorphic computing were well investigated.

The growth techniques of RRAM oxide materials

include traditional deposition methods, i.e., sputter-

ing, atomic layer deposition (ALD) and pulsed laser

deposition (PLD). In addition, novel methods for

RRAM fabrication have also been reported. The tra-

ditional and novel methods for RRAM are listed in

Table 4.

Pr12xCaxMnO3 (PCMO)-based synaptic
devices

Pr1-xCaxMnO3 (PCMO), as representative materials

in perovskite transition metal oxide, has been widely

employed as synaptic devices. Its resistive switching

property was first discovered by Asamitsu et al. in

late 1990 [135], which draws the attention from aca-

demies on complex transition metal oxide for RRAM

device [136, 137]. The resistive switching of PCMO is

based on metal–insulator (MIT) mechanism. MIT is a

kind of valence change system, in which the electrons

are injected into the insulator layer to conduct the

current with an external applied field. In PCMO, the

injected electronic charge distorts the superlattice

structure and the mixed valence band behavior, a

Figure 6 Experimental RRAM STDP curve. (Reprinted with

permission from Ref. [53].).

Figure 7 a Short-term

potentiation and b long-term

potentiation of Ag2S-based

devices are induced for

different spike rates.

(Reprinted with permission

from Ref [105].).
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process similar to ion doping processes. In addition,

PCMO is LRS active materials in which the SET

operation is associated with reverse biasing, while

RESET operation occurs at forward biasing.

In 2012 and 2013, Park [138, 139] demonstrated

1-kbit cross-point array neuromorphic system based

on PCMO synaptic devices. The HRS is achieved

with the applied positive bias when the oxygen ions

are attracted from the PCMO layer, thus forming a

thicker oxide layer with Al electrode. The continu-

ously increasing potentiation and depression behav-

iors were found when the identical spikes (pulses

with same amplitude and width) were applied. In

order to overcome the difficulty in achieving gradual

long-term depression (LTD) caused by asymmetry

potentiation/depression, a new programming

scheme was developed [140]. The growth process

control of PCMO device with TiN electrode was

studied to optimize the device electric performance

[141]. Similarly, to avoid an abrupt LTD, a two-

PCMO-memristor device model was proposed by

Moon et al. [142]. In 2015, a circuit capable of realiz-

ing the learning process was designed and published

[143]. In the same year, a high-density PCMO cross-

point synapse array on the 8-inch wafer was fabri-

cated. The proposed system had been demonstrated

to recognize human thought patterns for three vow-

els [97]. In addition, vivo experiment had also been

performed by the group. In the paper, the PCMO-

based nanoscale analogy synapse device was suc-

cessfully applied for neural fear-conditioning signal

recognition on a live rat. In 2016, Moon, K from

Hwang, H group reported PCMO-based interface

switching device with 5-b MLC (32 levels) and

improved data retention by using Mo electrodes for

the neuromorphic system [144]. The Mo/PCMO

Figure 8 The periodic table of the elements highlighted with the host metal of RRAM materials and those had demonstrated for

neuromorphic computing.

Table 4 Summary of RRAM

device fabrication methods RRAM device deposition methods

Traditional methods Sputtering [106–113]

Atomic layer deposition [23, 114–117]

Pulsed laser deposition [118–122]

Plasma enhanced chemical vapor deposition [123–125]

Chemical synthesis particle ? spin-coating [126–128]

Sol–gel [129–132]

Novel methods Shattering process using an atomic force microscopy (AFM) tip [133]

Semi-auto screen printer [134]
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synapse array has experimentally confirmed with the

realization of pattern recognition with high accuracy

when working with NbO2 oscillator neuron [145]. In

2017, a comprehensive study of PCMO-based

synaptic devices had been reported in the book

‘‘Neuro-inspired Computing Using Resistive Synap-

tic Devices’’ [146]. The PCMO synapse performance is

evaluated in 1-kb and 8-kb crossbar arrays. The

interfacial-type PCMO RRAM was demonstrated

with wide on/off ratio (104), extremely stable analogy

resistance changes and low LRS current (1 lA) when

device scales down to 150 nm. The influence of active

electrode, nitrogen treatment and extra insulating

layer (AlOx) has also been investigated. The synaptic

performance of PCMO is evaluated as shown in

Fig. 9, where the potentiation and depression with

identical and non-identical spikes are displayed. It is

observed that the gradual switching of depression is

only triggered by non-identical spikes, which is

accounted for the high asymmetry ratio of potentia-

tion/depression conduction.

So far, PCMO is one of the most matured RRAM

materials for neuromorphic computing. It possesses

various advantages: nanoscale device dimension

(150 nm), multi-level states (5-b MLC), retention,

uniformity (STD(r)/Iave\ 0.5), on/off ratio (104) and

high-density crossbar array structure (8 kb) [146].

However, further improvement of symmetric weight

update is still required.

HfOx-based synaptic devices

HfOx materials have been widely used in RRAM

materials because of its excellent CMOS compatibil-

ity. In industries, HfOx has been employed as a high-

k dielectric for the gate insulator of CMOS MOSFETs.

In HfOx-based RRAM device, TiN is usually applied

as an electrode. TiN functions as an oxygen scav-

enger that depletes the O atom from HfOx thin film

and functions as an oxygen reservoir. It has been

reported that HfOx RRAM has a large on/off ratio

([ 102), high endurance ([ 106), retention, multi-bit

storage and high-speed operation (\ 10 ns) [142–146].

In 2011, a novel electronic synapse of HfOx/AlOx-

based memory was presented by Yu et al. The

structure showed attractive features such as reduced

randomness of resistive switching, multi-level

switching and the capability to modulate resistances

based on the input pulse amplitudes, suggesting

great potential to use in emerging neuromorphic

computation system [147]. In 2012, the same group

reported HfOx-based RRAM device application in the

neuromorphic visual system. At the system level, a

neuromorphic visual system consisting of 1024

CMOS neuron circuits and 16,348 RRAM synaptic

devices was fabricated. The system exhibited great

performance in image orientation selectivity and high

tolerance on temporal and spatial variability. After

one year, Gao, B [148] and his coworkers developed a

method to achieve gradual switching on the setting

process in TiN/HfOx/Pt devices. To avoid the gen-

eration of random and avalanching oxygen vacancies

Figure 9 Potentiation and depression with various programming spikes: identical and non-identical spikes, reprinted with permission

from Ref. [146].
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(VO) clusters, the team developed a methodology by

doping trivalent elements into HfOx layer. The local

formation energy of VO near the dopants was

reduced, and VO will distribute more uniformly in

the conductive filament region. The fabricated TiN/

Gd:HfOx/Pt devices have also shown controllable

multilevel resistive switching behavior. Garbin [149]

applied pulse-train schemes to a 3 bit per cell HfO2

RRAM in 2014, causing the relative standard devia-

tions of resistance levels to improve up to 80% com-

pared to the single-pulse scheme. In the same year,

Benoist, A integrated TiN/HfO2/Ti/TiN RRAM with

an advanced 28-nm CMOS process [150]. A global

overview of HfO2 material performances was asses-

sed on a statistical basis, and projection for larger

array integration was discussed. The influence of Cu

dopant was investigated by Tingting, G., and it was

found that Cu-doped HfO2-based RRAM has

improved resistive switching with multilevel storage

[151]. The application of Mn-doped HfO2-based

RRAM has demonstrated speech recognition by

Mandal [3]. A comparison between a 20-nm times

20-nm sized synaptic memory device with that of a

state-of-the-art VLSI SRAM synapse has exhibited 103

reduction in area and 106 times reduction in the

power consumption per learning cycle. The colormap

for speech recognition of words ‘‘Hello’’ and ‘‘Apple’’

is shown in Fig. 10.

In 2015, Wang presented a new artificial synapse

scheme, consisting of a HfOx RRAM memristive

switches connected to 2 transistors responsible for

gating communication and learning operations.

STDP was achieved through appropriate shaping of

the presynaptic and the postsynaptic spikes [152].

Covi, E demonstrated the Al:HfO2 memristor device

use for artificial synapse, emulating the potentiation

and depression processes using an easily imple-

mentable algorithm based on a train of identical

pulses [153]. The impact of HfOx-based synapses

cycle to cycle (temporal) and device to device (spa-

tial) variability on the convolutional neural network

was investigated by Garbin, D [154]. The results

showed that the convolutional neural network (CNN)

architecture has a high tolerance to the variability.

Lee et al. [155] proposed a silicon-based charge trap

memory with Al/HfO2/Al2O3/Si3N4/Si structure.

The device implemented both short-term plasticity

and long-term potentiation in the synapse. The use of

HfO2-based oxide-based resistive memory (OxRAM)

devices operated in a binary mode to implement

synapses in a CNN was also studied by Garbin, D in

2015 [149]. The proposed HfO2-based OxRAM tech-

nology offers good electrical properties including

high endurance ([ 108 cycles), fast speed (\ 10 ns)

and low energy (\ 10 pJ). High accuracy (recognition

rate[ 98%) was demonstrated for a complex visual

pattern recognition application. Covi, E proposed

TiN/HfO2/Ti/TiN memristor as artificial synapse

for neuromorphic architectures. The collected STDP

data were used to simulate a simple fully connected

spiking neural network (SNN) for pattern recognition

[156]. An innovative approach for real-time decoding

of brain signals based on SNN was presented by

Werner [157]. HfOX-based RRAM devices were used

to implement synapse and SNN, enabling the net-

work for autonomous online spike sorting of mea-

sured biological signals. The system allows real-time

learning and completely unsupervised operation. The

real-time functionality, low power consumption (10

nW) and high recognition rate 90% of the system

make it a great candidate for future healthcare

applications. HfOx-based synapses were used in SNN

Figure 10 Synaptic weights. a Initial current level. b The con-

ductance distribution when the word ‘‘Hello’’ trained on the

crossbar array of synaptic devices. c) The conductance distribution

when the word ‘‘Apple’’ trained on the crossbar array of synaptic

devices. Reprinted with permission from Ref. [3].
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for real-time unsupervised spike sorting of complex

brain signals. Synaptic weights are modulated

through the application of an online learning strategy

inspired by biological STDP. According to the report

by Wang et al. [158] this network had been tested by

real spiking data from the in vitro preparation of the

crayfish sensory-motor system. The proposed RRAM

was validated by different sets of real biological

spiking data without parameter tuning (e.g., the

threshold level for spike detection). This artificial

SNN is able to identify, learn, recognize and distin-

guish between different spike shapes in the input

signal with a recognition rate about 90% without any

supervision.

HfOx is a superior RRAM material and the HfOx-

based synaptic device has demonstrated its applica-

tion in neuromorphic computing, such as speech or

pattern recognition. Gradual switching in the SET

process can also be achieved through doping with

trivalent metals, enabling the high-density

applications.

TaOx-based synaptic devices

TaOx-based synaptic devices have also attracted

much attention. TaOx switching layer in an RRAM

device usually consists of two phases: TaO2 phase

which is more conducting and Ta2O5 phase which is

more insulating. The TaOx RRAM has been reported

to possess high endurance ([ 1012 cycles), and its

application in neuromorphic computing has been

well demonstrated. TaOx could be engineered in

synaptic device alone or combined with another

oxide (TiO2) layer in MIM structures. In this section,

both single-layer TaOx or multi-layer TaOx-based

synaptic devices will be discussed.

Wang reported a high-density 3D synaptic archi-

tecture based on Ta/TaOx/TiO2/Ti RRAM with

ultralow sub-10 fJ energy per spike for neuromorphic

computation in 2014 [159]. In addition, the analogue

synaptic plasticity was simulated using the physical

and compact models to facilitate future neuromor-

phic system designs. Thereafter, Wang et al. further

investigated the synaptic device with the same

structure experimentally and theoretically. The

results showed that the device can be used for

implementing concurrent inhibitory and excitatory

synapses (Fig. 11). In addition, the devices also pro-

vided superior performances as compared to typical

filamentary synaptic devices in reducing synaptic

conductance and state fluctuation [160]. In the report,

a physics-based compact model was also proposed

for facilitating circuit-level design. Based on previous

studies, the group successfully applied 3D two-lay-

ered Ta/TaOx/TiO2/Ti cross-point synaptic array to

implement highly anticipated hardware neural net-

works (HNN) in 2016 [161]. In total, more than 50

analogue synaptic weight states were controlled with

minimal drifting during a cycling endurance test of

5000 training pulses. The team also proposed a new

state-independent bipolar-pulse-training (BP)

scheme, and this scheme significantly improved the

nonlinearity of weight updates, consequently

improving the training accuracy.

Similarly, Ta/TaOx/TiO2/Ti synaptic devices were

also reported by Gao et al. [162]. The device is

forming-free, and more than 200 levels of conduc-

tance states could be continuously tuned by identical

programming pulses. In addition, the team proposed

a novel fully parallel write and read scheme to

accelerate the weight update and increase energy

efficiency in the training process on the chip. In order

to engineer the conduction modulation linearity,

Wang et al. [163] proposed a new approach in 2016

where a diffusion limiting layer (SiO2) is inserted at

the TiN/TaOx interface. The device exhibited higher

switching linearity and lower power consumption

that is desirable in neuromorphic computing hard-

ware. Recently, Pt/Ta2O5-x/W devices fabricated

using vertical 3D architectures were demonstrated by

Wang [164]. The proposed memory can be recovered

with a timescale when the electrical stimulation was

removed. This recoverable process can emulate the

synaptic plasticity including rapid decay and slow

decay stages of forgetting in the memory loss process

of the human brain. Yao, P and his coworkers

reported face classification using electronic synapses

of TaOx/HfAlyOx-based RRAM devices [165]. This

optimized device structure has shown bidirectional

continuous weight modulation behavior. A neuro-

morphic network is developed using analogue

1024-cell-1T1R RRAM array, and its application in

grayscale face classification has been experimentally

demonstrated with parallel online training. The

energy consumption in each iteration is

1000 9 (20 9) smaller than the Intel Xeon Phi pro-

cessor with off-chip memory.

From our literature review, bilayer stack TaOx/

(HfAlyOx, TiOx) is intentionally designed as a

synaptic device in the application of neuromorphic
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computing. The possibility of engineering the TaOx-

based RRAM array in 3D structure enables the

emulation of the high-density synaptic network in the

real biological system.

TiOx-based synaptic devices

TiOx is one of earliest materials found to exhibit

resistive switching property. In the previous section,

TaOx/TiOx bilayer structure RRAM for synaptic

application has been introduced. Here, we will dis-

cuss other multi- and single-layer TiOx-based

synaptic devices.

In 2011, the synaptic performance of TiO was

explored by Seo [46], demonstrating that TiOx and

TiOy bilayer RRAMs exhibit analogue property

where the multilevel conductance states were caused

by the movement of oxygen ions between the two

TiOx phase. The STDP was demonstrated by apply-

ing 100 successive identical pulses for potentiation or

depression of synaptic weight. A year later, Yu

developed TiOx/HfOx/TiOx/HfOx multi-layer

RRAM stacks exhibiting more gradual and smooth

RESET switching for synaptic devices [166]. Short

pulses (10 ns) with an identical pulse amplitude

enabled a sub-pJ energy per spike with potentially

simple neuron circuits. Berdan emulated short-term

synaptic dynamics with TiO2 memristive devices in

2015 [167]. The meta-stable memory transitions in

TiO2 RRAM devices have proved to be the key fea-

ture to capture short-term synaptic dynamics. In

addition to Seo, K works on bilayer TiOx/TiOy

RRAM structure in 2011 [46], Bousoulas, P studied

amorphous–crystalline interfaces in TiOx/TiOy

RRAM structures for enhanced resistive switching

and synaptic properties [168]. A physical model was

also proposed to divulge the crucial role of temper-

ature, electric potential and oxygen vacancy density

on the switching effect. An 8 9 8 array of the neuron

on a standard 6 M 180 nm of CMOS process as part

of a larger multi-purpose neuromorphic chip was

demonstrated by Mostafa, H as shown in Fig. 12

[169]. The proposed CMOS-memristor system com-

prises of CMOS neurons interconnected through TiOx

memristors and spike-based learning circuits which

modulate the conductance of the memristive synapse

elements according to a spike-based perceptron

plasticity rule. In 2016, Park developed a Mo/TiOx-

based interface RRAM and proposed a hybrid pulse

mode for the synaptic application [170]. The TiOx-

based device is capable of producing 64-level con-

ductance states, and the proposed hybrid pulse mode

improves the symmetry of conductance change

under both potentiation and depression conditions.

The neural network simulation has shown that the

hybrid pulse mode can enhance the pattern recogni-

tion accuracy of the proposed TiOx stack.

Although extensive investigations have been car-

ried out on switching mechanism of TiOx RRAM, the

demonstration of TiOx RRAM for neuromorphic

computing is still limited when compared to the

above-mentioned PCMO, HfOx, TaOx materials. In

most situations, TiOx is used in conjunction with

bilayer or multi-layer synaptic device to optimize the

performance.

Figure 11 Spike-timing-dependent plasticity (STDP). a Biomor-

phic-action-potential-like waveforms used for STDP measurement

and simulation. The prespike pulse was applied to the Ta electrode,

and the postspike pulse was applied to the Ti electrode. The

potentiation and depression actions were controlled by the relative

timing of the pre- and postspikes (Dt). The synapse weight change

(Dw) was positive for Dt[ 0, whereas it was negative for Dt\ 0.

b The measured Dw as a function of Dt for the Ta/TaOx/TiO2/Ti

device. The red line shows the fitting result of using the physics-

based compact model. c Simulation results for STDP, obtained by

considering oxygen ion migration and the homogeneous barrier

modulation model. Reprinted with permission from Ref [160].
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NiOx-based synaptic devices

Similar to TiOx, NiOx is one of earliest materials

found to exhibit restive switching behavior. Although

NiOx-based RRAM devices have been reported with

high endurance (106) and retention, its application for

neuromorphic computing is restricted due to the

poor uniformity. A bipolar NiOx RRAM, two NMOS

FET and a capacitor were used to fabricate analogue

synaptic devices (circuits) by Akoh [171]. This device

also has the ability to update the synaptic conduc-

tance according to the difference of pre- and post-

neuron spike timing. In 2013, Hu emulated the

paired-pulse facilitation of biological synapse with

NiOx-based memristor, thus creating a form of short-

term synaptic plasticity [172]. It was also observed

that the current in NiOx-based memristor had

increased after a second electrical pulse. Addition-

ally, the magnitude of the facilitation decreases with

the pulse interval and it increases with the pulse

magnitude or pulse width. Hu, S.G and his cowork-

ers realized the well-known Pavlov’s dog model with

NiOx-based memristor [173]. The long-term

potentiation behavior was emulated by the increase

in memristor’s conductance when applying the elec-

trical pulses. In addition, spontaneous conductance

decaying toward its initial state resembles the

synaptic long-term potentiation. Finally, an artificial

neural network was constructed to realize the Pav-

lov’s dog model (Fig. 13).

WOx-based synaptic devices

Tungsten oxides (WOx) are another great candidate

for memristive devices as a bio-inspired artificial

synapse. The advantage of WOx-based synaptic

devices includes accredited endurance (105 cycles),

CMOS compatibility and memorization and learning

functions. Here, we highlight the implementation of

this material in neuromorphic computing as a bio-

logical artificial synapse.

Synaptic behaviors and modeling of a WOx mem-

ristive device were reported by Chang [174] .The Pd/

WOx/W-structured memristor device shows reliable

synaptic operations with good endurance. The

synaptic devices can endure at least 105 potentiation/

depression pulses without degradation. Furthermore,

the memristor behavior was explained by a novel

model that takes both drift and diffusion effects into

consideration. Figure 14 presents the retention loss

Figure 12 a Micrograph of the multi-purpose neuromorphic chip

die showing the neuron tile array and the bias generator.

b Illustration of the hardware setup used to obtain measurements

in this paper. The presynaptic terminal of one neuron tile is

connected to the postsynaptic terminal of another neuron tile

through an off-chip TiO2-x memristor. A PC controls the digital

settings of the on-chip bias generator. Reprinted with permission

from Ref. [169].

Figure 13 Learning and forgetting of association in Pavlov’s dog

experiment realized with the three-neuron neural network.

Reprinted with permission from Ref [173].
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curve and forgetting memory in a human memory

curve from a paper by Chang [47]. It was found that

the trend of retention curve of a Pd/WOx/W-based

memristor and human forgetting curves greatly cor-

respond to each other and both can be fitted using a

stretched-exponential function (SEF). In addition, the

temperature and humidity impact on the perfor-

mance of a WOx memristive device was studied by

Meng et al. and Yong et al., respectively [175, 176].

According to the simulation results, the synaptic

weight of WOx memristive device decays faster as the

temperature increases due to higher oxygen vacan-

cies diffusion. In addition to the temperature, the

memristive effects of tungsten oxide are also highly

humidity dependent. The adsorbed moisture on the

surface of WO3 has resulted in decreasing conduc-

tances as the H cation induces an increase in barrier

heights.

Among other transition metal oxides, WOx is a

great candidate material for synaptic devices appli-

cation. For further exploring its application in

neuromorphic computing, enhancement of synaptic

operation time (endurance) is of importance.

AlOx-based synaptic devices

The resistive switching behavior in AlOx was first

reported by Hickmott [1]. AlOx is of interest in

RRAM materials due to its large band gap (* 9 eV)

and low RESET current (* lA). For neuromorphic

application, AlOx can also be used alone or stacked

with other RRAM materials to improve the unifor-

mity of the synaptic device characteristics.

AlOx-based resistive switching device was inves-

tigated by Wu [49] to serve as a potential electronic

synapse device. The 0.48 lm 9 0.48 lm Ti/AlOx/

TiN memory stack exhibited multi-level resistance

states when varying the compliance current levels or

the applied voltage amplitudes during pulse cycling.

In his work, around 1% resistance change per pulse

cycling was obtained and an STDP realization

scheme was proposed to implement the synaptic

device in large-scale hardware neuromorphic

Figure 14 a DC I–V curves

of a memristor studied.

b Schematic illustration of

oxygen vacancy diffusion.

c Retention loss curve of Pd/

WOx/W-based memristor.

d Forgetting memory of

human memory curve.

e Schematic illustration of

synaptic plasticity modulation.

Reprinted with permission

from Ref [47].
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computing system. In 2015, Prezioso experimentally

characterized Al2O3/TiO2-based memristors to

modulate the impact of conductance-dependent

conductance change on short-term dependent plas-

ticity [177]. The utilization of TiOx/Al2O3-based

memristor devices to emulate biological synaptic

behavior for building brain-inspired computers was

explored by Banerjee, W.et al. in 2017 [178]. The

proposed TiO2/Al2O3 synaptic device has the capa-

bility to switch from short-term memory (STM) to

long-term memory (LTM) by introducing a mezza-

nine state at medium memory (MM) as shown in

Fig. 15. In the paper, the dependence of retention

(decay time) on conductance levels (memory level)

was investigated and an experimentally proven

psychological model is presented.

Till now, the potential validity of Al2O3 materials

for electronic synapses had been experimentally

demonstrated. Nevertheless, the reports of sophisti-

cated Al2O3-based memristor as an artificial synapse

are limited. Therefore, further verification with dif-

ferent structures is required.

Other oxide-based synaptic devices

Besides the materials discussed above, a variety of

other materials has been studied to implement neural

network as a synaptic device. FeOx-based RRAM

with mixed-analogue–digital behavior was investi-

gated by Deng et al. [12] for a recurrent neural net-

work using the recursive least-squares algorithm.

Wang, C.H et al. reported the synaptic behavior of a

FeOx-based RRAM in which the dependence of

compliance current on conductance stability was

studied [179]. The application of CeO2-based RRAM

for highly energy efficient neuromorphic systems

was demonstrated by Kim et al. The Pt/CeO2/Pt

device exhibited the polarity-dependent and asym-

metric diode-type resistive switching [180], and the

detailed switching characteristics of artificial synap-

ses (potentiation and depression) were discussed.

A GdOx and Cu-doped MoOx stack with a platinum

top and bottom electrodes were reported by Choi

[45]. The weighted sum operation was carried out on

electrically modifiable synapse array circuit based on

the proposed stacks [181]. The biological synaptic

behavior was demonstrated by Chang through inte-

grating SiOx-based RRAM with Si diodes. The pro-

posed one-diode-one-resistor (1D-1R) architecture

not only avoids sneak-path issues and lowers

standby power consumption, but also helps to realize

STDP behaviors [182]. VOx is a well-known Mott

material which experience sharp and first-order

metal-to-insulator transition (MIT) at the around

68 �C [183]. The application of VOx as RRAM mate-

rials had been explored by Drisoll et al. [184] through

sol–gel technique. Nevertheless, most researches on

VOx so far focus on its use for select device which can

be integrated with RRAM device to mitigate sneak-

path current. The Pt/VO2/Pt selector has been inte-

grated with NiO unipolar RRAM by Lee et al. [185] in

2007 and ZrOx/HfOx bipolar RRAM by Son et al.

[186] in 2011. In 2016, 1S1R configuration of W/VO2/

Pt selection device and Ti/HfO2/Pt RRAM was

demonstrated by Kailiang et al. [187]. However,

thermal instability is a major challenge for VO2 for

practical applications [14].

Summary and outlook

In conclusion, we have outlined an overview of

oxide-based RRAM materials for the applications in

neuromorphic computing. Table 5 summarizes the

RRAM materials and their parameters discussed in

this review. Our work suggested that the neuromor-

phic approach with oxide-based RRAM devices is

promising. So far, PCMO, HfOx, TaOx, TiOx, NiOx,

WOx, AlOx, etc., materials have been demonstrated

for their application in oxide-based synaptic devices.

However, challenges still remain in specific materials,

Figure 15 Memory effects in the TiOx/Al2O3-based electronic

synaptic junction. The figure shows the conductance failure with

time. A linear scale plot is shown in the inset of the figure.

Reprinted with permission from Ref [178].
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e.g., poor symmetric weight update for PCMOx-

based synaptic devices and low endurance for WOx-

based synaptic devices. In general, there are two

main key challenges for overall oxide-based RRAM

materials. Although the inherent fault tolerance of

neural network models is able to mitigate the impact

of device variation to some extent, the improvement

of spatial variation and temporal variation turns out

to be one of the greatest challenges on a long-term

basis. In addition, improvement of reliability char-

acteristics of the RRAM synaptic devices is another

key challenge which is not well studied.

In future material research of neuromorphic com-

puting applications, the study of novel tunable

materials with enhanced properties for neuromor-

phic devices is one of the most exciting components.

One such example is MgO, which has a large band

gap that ensures sufficient band offsets, a high

dielectric constant that might potentially reduce

leakage current (thus improving device scalability), a

high thermal conductivity which minimizes self-

heating during operations and a large breakdown

field that might prevent the device from irreversible

damages. In addition, MgO-based magnetic tunnel

junction memristors had been proposed for imple-

mentation of synapses [188]. Further research is

required to expand the database of materials for

synaptic devices and neuromorphic applications.

Finally, to implement oxide-based RRAM devices

as a synapse in neuromorphic systems, it is impera-

tive to have an in-depth understanding of the meta-

plasticity mechanism and internal states of these

memristive devices. The underlying mechanisms

governing RRAM devices will inevitably be discov-

ered from investigations of conduction and resistive

switching mechanism via results from either experi-

ment or simulation. Further research work incorpo-

rating interactions between materials, device levels,

circuit designs and computing processes will

Table 5 Summary of RRAM materials in this review

Material On/

off

ratio

Endurance Energy

consumption

Multi-

levels

Switching

time

Neuromorphic computing applications

PCMO

[97, 136–146]

103 105 6 pJ 32 8 ns Pattern recognition

Human thought patterns

Neural fear-conditioning signal recognition

HfOx

[147–151]

102 106 10 pJ 8 10 ns Speech recognition

Visual pattern recognition

TaOx

[158–164]

10X 1012 10 fJ 200 105 ps Grayscale face classification

TiOx

[46, 166–170, 189]

105 2 X 106 sub-pJ 64 5 ns Pattern recognition in simulation

NiOx

[171–173, 185, 190, 191]

106 106 – 5 20 ns Learning and forgetting of association in Pavlov’s

dog experiment realized.

WOx

[47, 174–176, 192]

103 105 – 8 50 ns Human forgetting curves

AlOx

[49, 193–195]

106 105 1.5 pJ 10 10 ns Spike-timing-dependent plasticity realization

scheme.

FeOx

[179, 196, 197]

102 6 9 104 – 6 10 ns Long-term potentiation and long-term depression

demonstration

CeO2

[180, 198]

105 104 – 8 200 ns Synaptic potentiation and depression

characteristics demonstration

MoOx

[39, 199]

109 106 – 8 1 ms Weighted sum operation carried out on MoOx-

based electrically modifiable synapse array

circuit

SiOx

[182, 200–202]

107 106 – 4 100 ps Long-term potentiation and long-term depression

demonstration
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certainly speed up the realization of oxide-based

RRAM synapses for neuromorphic systems.
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