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1.  Introduction

The control of magnetic domain wall (DW) position in 
nanoscale ferromagnetic structure is crucial for the successful 
realization of DW based magnetic logic and memory devices 
[1–5]. Interfacial Dzyaloshinskii–Moriya (IDM) interaction 
which accounts for asymmetric exchange interaction in magn­
etic system [6–12] has received renewed interest due to its role 
in favoring chiral structure in DWs, skyrmions and spin spi­
rals [13–18]. These chiral structures possess intriguing magn­
etic behaviours such as asymmetric expansion of circular 
DW under field driving [19], large DW surface tilting [20], 
efficient DW driving with the application of magnetic field 
[21] or spin-polarized current [22] and suppression of Walker 
breakdown with strong IDM interaction [23]. DM interaction 
could lead to the possibility of controlling DW position electri­
cally [24]. The presence of electric field changes the strength 
of Dzyaloshinskii–Moriya interaction which in turn changes 
the pinning potential on spin spiral DW. This provides a new 
means to pin a DW. Aforementioned studies on DWs have 
been performed in a uniform nanowire. The influence of IDM 

interaction on DWs in a notched ultra-thin nanowire, which 
would likely be used to manipulate DWs in magnetic memory 
or logic devices, remains unexplored. In this paper, we theor­
etically and numerically show that irrespective of the type of 
notch, the presence of IDM interaction leads to different static 
depinning field for Néel DWs with similar handedness. The 
depinning field difference is highly dependent on the angle of 
the notch. This is attributed to the tilting of the Néel DW as 
it propagates through the nanowire. We also show via micro­
magnetic simulation that the damping constant plays a pivotal 
role in controlling the strength of the depinning field differ­
ence. Damping constant dependent behaviour is not reflected 
in our theoretical derivation due to the usage of energy argu­
ments. This spin orientation dependent diode property could 
be exploited in magnetic memory or logic devices.

2. Theoretical model

An ultrathin nanowire with length l, width w and thickness 
t such that �t  l, w is considered. The x axis is along the 
wire length, y axis is along the width and z axis is along the 

Journal of Physics D: Applied Physics

Dzyaloshinskii–Moriya interaction 
induced domain wall depinning anomaly 
in ferromagnetic nanowire

Han Kheng Teoh, Sarjoosing Goolaup and Wen Siang Lew

School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

E-mail: wensiang@ntu.edu.sg

Received 21 April 2016, revised 26 September 2016
Accepted for publication 19 October 2016
Published 23 November 2016

Abstract
Magnetic domain wall positional manipulation is usually through the introduction of potential 
trap. In this work, we show that the presence of interfacial Dzyaloshinkii–Moriya interaction 
leads to a different static depinning field for Néel domain walls with the same handedness in a 
notched magnetic nanowire. The difference in static depinning field is due to the Néel domain 
wall spin orientation. The spin orientation leads to different torques being exerted on the 
localized magnetic moments. This inherently imposes a spin orientation dependent diode-like 
behavior for domain walls in a notched nanowire. An equation which relates the difference in 
static depinning field to the notch geometry is derived. Micromagnetic simulation with varying 
damping constant reveals the influence of damping constant on the strength of depinning 
anomaly.

Keywords: Dzyaloshinskii–Moriya interaction, micromagnetism, domain wall

(Some figures may appear in colour only in the online journal)

H K Teoh et al

Dzyaloshinskii–Moriya interaction induced domain wall depinning anomaly in ferromagnetic nanowire

Printed in the UK

015004

JPAPBE

© 2016 IOP Publishing Ltd

50

J. Phys. D: Appl. Phys.

JPD

1361-6463

10.1088/1361-6463/50/1/015004

Paper

1

Journal of Physics D: Applied Physics

IOP

2017

1361-6463/17/015004+8$33.00

doi:10.1088/1361-6463/50/1/015004J. Phys. D: Appl. Phys. 50 (2017) 015004 (8pp)

mailto:wensiang@ntu.edu.sg
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6463/50/1/015004&domain=pdf&date_stamp=2016-11-23
publisher-id
doi
http://dx.doi.org/10.1088/1361-6463/50/1/015004


H K Teoh et al

2

thickness, out of plane. A triangular notch of w1 depth which 
extends an angle of θ and α along the x-axis is positioned at 
the top edge as shown in figure 1(c).

The total free energy of the notched nanowire can be 
described by:

Vm m m m m m d ,a d hex DME ( ) [ ( ) ( ) ( ) ( ) ( )]∫ ε ε ε ε ε= + + + +
� (1)
where m is the unit magnetization, Am mex

2( ) ( )ε = ∇  is 
the exchange energy density with exchange constant A, 

D m mm m mz zDM( ) [ ( ) ( ) ]ε = − ∇ ⋅ − ⋅ ∇  is the Dzyaloshin­
skii–Moriya exchange energy density, the magnetiza­
tion spatial variation along the z-direction is neglected 
( zm 0/∂ ∂ ≈ ) due to an ultra-thin nanowire being considered, 
D is the parameter that takes into account the intensity of 
IDM interaction, Km m u1a u k

2( ) [ ( ) ]ε = − ⋅  is the anisotropic 
energy density with Ku as the uniaxial anisotropy consant, 

Mm m hd s d
1

2 0( )ε µ= − ⋅  is the demagnetizing energy density, 

and Mm m hh s0( )ε µ= − ⋅  is the Zeeman energy density.
Using calculus of variation to minimize the energy in 

equation  (1) with constraint m m 1⋅ = , yields the Euler–
Lagrangian equation,
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where i  =  1,2,3. In the presence of IDM interaction, boundary 
condition
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A
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,z( )∂
∂
= × ×� (3)

where n is a local unit vector perpendicular to the nanowire 
surface that has to be imposed on solutions to equation (2). If 
equation (2) has a DW solution with non-zero external field h, 
this implies that the DW is pinned within the system. The geo­
metrical constriction can be treated as a trap potential well for 

DW [25] and the pinning function can be assumed phenom­
enologically to approximate the true pinning potential around 
a notch. Recently, a criterion valid for all DWs and notches 
in a system without DM interaction was derived to estimate 
static DW depinning field [26]. However, no explicit form of 
the pinning potential was assumed. To derive the difference 
of depinning field in our system, we consider a more general 
form of the criterion,

( )∫ ∫ ∫ε∇ ∇ = − ∇
∂Ω ∂Ω

∗

Ω
m m VS S h m. d d . d ,i i d� (4)

where ε∗ is the total energy density without demagnetizing 
energy density term, ∂Ω is the boundary of the nanowire. 
With the presence of IDM interaction in a magnetic system 
with perpendicular anisotropy, the Néel DW is favoured as the 
stable magnetization texture. Subsequent discussion is based 
on a Néel DW in a notched nanowire.

Without loss of generality, the case D  <  0 is considered as 
the case D  >  0 can be deduced by symmetry argument. For 
a system with D  <  0, the Néel DWs adopt left-handed spin 
orientation as shown in figure 1(b): up–down ↑↓ (down–up ↓↑) 
magnetization with internal profile pointing along the negative 
(positive) x-axis. As shown in figure 1(c), Néel DW pinned 
away from a notch centre (A) will have its shape deformed 
such that the DWs intersect perpendicularly with the defect 
edge [27]. For simplicity, both configurations are assumed to 
have the same DW shape. To describe these Néel DW profiles 
at the notch (A) and at the uniform edge (B), the following 
ansatz is used:

m xcos sinx ( )θ φ=� (5a)

m xsin siny ( )θ φ=� (5b)

m xcos ,z ( )φ=	�  (5c)

Figure 1.  (a) Schematic for Néel DW profiles with right handedness. (b) Schematic for Néel DW profiles with left handedness. (c) 
Schematic of a notched nanowire of dimension l w t× × . A Néel DW is geometrically pinned at the triangular notch of depth w1 which 
extends an angle of θ and α from the x-axis.
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where

x
y y x x

2 tan exp
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θ θ
=

− + −
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θ is the notch angle, φ is magnetization angle with 
respect to the x  −  y plane, x y,( )′ ′  is the position of the DW, 
∆ represents the wall width parameter, n is an integer that 
enables the two types of walls (where φ varies from 0 to 
π±  or from π±  to 2π± ). The  ±  determines the handedness 

of the DW. Equation (6) can be reduced to the familiar 1D 
profile describing the domain profile at the uniform edge 
(B) by setting 0→θ . By applying equation (4) to both cases 
and since the exchange energy density, anisotropy energy 
density, demagnetizing energy density and the LHS term 
of equation  (4) are essentially the same for both ↑↓ and ↓↑ 
configurations,

∫ ∫∇ ∇ = ∇ ∇
∂Ω

↓↑ ↓↑
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↑↓ ↑↓m m m mS S. d . di i i i( ) ( )� (7a)
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m S m Sd da a( ) ( )∫ ∫ε ε=
∂Ω

↓↑
∂Ω

↑↓� (7c)
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Ω

↓↑
Ω

↑↓� (7d)

thus,

S Sd dh DM∫ ∫ε ε∆ = ∆
∂Ω

∗

∂Ω

∗
� (8)

where m mh h h( ) ( )ε ε ε∆ = −∗
↓↑ ↓↑  is the difference in de-pin­

ning field and m mDM DM DM( ) ( )ε ε ε∆ = −∗
↓↑ ↓↑  corresponds to 

the difference in DM interaction energy density for ↑↓ and 
↓↑ DW. A ↑↓ DW is considered to be positioned at the notch 
as A x w,0 1( ) and at the uniform edge as B x x w w,0 1( )δ+ −  
respectively. In this calculation, the ↑↓ DW shape bending is 
assumed to be small.

For IDM interaction energy along a notch,
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Substituting the DW profile along with its derivatives, and 
noting that m x 0i j/∂ ∂ ≈  for the region away from the DW,

E Dt4 tan tanh
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⎠
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= −� (10)

At the uniform edge (B), the IDM interaction energy can be 
obtained by repeating a similar procedure. The IDM interac­
tion energy of the system is then found to be

E Dt4 tan tanh
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1
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The IDM interaction energy for the ↓↑ DW configuration can 
be computed in a similar manner. The difference in IDM inter­
action energy is determined to be E2 DM

↑↓ . The calculation of 

external field energy term is more straightforward compared 
to IDM interaction energy calculation. In this case, we will 
assume that xδ  is small such that our external field energy term 
is approximately

E M th w w2 2 cosec cot .h s c0 1( ( ))µ θ θ≈ + −↑↓� (12)

The difference in external field energy between the two Néel 
DWs is then found to be

E M h t w w2 cosec coth s c0 1( ( ))µ θ θ∆ = ∆ + −� (13)

where |∆ | = | − |↑↓ ↓↑h h hc c c . Thus, the difference in depinning 
field for a symmetrical triangular notch is derived to be
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Equation (14) gives the analytical estimate for the difference 
in static depinning field for Néel DWs of the same handedness 
that occurs in a symmetric triangularly notched nanowire. 
From equation (14), it can be observed that as long as IDM 
interaction is present in a notched modulated nanowire, a 
depinning anomaly exists. This is because the only possible 
way to have h 0c∆ = , we would need 0θ =  which cor­
responds to a uniform nanowire. For an asymmetrical tri­
angular notch, the last term of equation  (14) is modified as 

1 cosec cot cosec cotw

w2

1
1 (( ) ( ))⎡⎣ ⎤⎦θ θ α α+ − + −

−
, where θ and 

α are the notch angles. An expression for a rectangular notch 
of depth w1 and width l1 can be also derived by substituting 

2/θ π=  in equation  (14). In this case, the governing equa­
tion is reduced to

h
D

M w

w

w

4

4
tan tanh

1

4
1 .c

s0

1 1
1⎡

⎣
⎢

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟
⎞

⎠
⎟
⎤

⎦
⎥
⎛

⎝
⎜

⎞

⎠
⎟

µ
π

|∆ | ≈
| |

− +−
−

� (15)

The equations  derived above are based on the following 
assumptions: (1) the magnetization is uniform along the 
thickness direction which is only valid if the wire thickness 
is less than exchange length ∆. This assumption leads the 
derived depinning field to be thickness independent. In a real 
system where stable DW texture is dependent on film thick­
ness [28, 29], wire thickness is an important parameter in 
determining the depinning field. (2) In our calculation, we 
assume that the ↑↓ and ↓↑ DW acquire the same shape when 
they are marginally pinned as shown in figure 1(c). As a first 
approximation, unconstrained Néel DW profiles are used to 
model the DWs along the edges of the nanowire. In reality, 
with the presence of DM interaction, field driven DW will 
exhibit tilting that is dependent on the DW profile [20], thus 
we will have different DW shapes for the spin orientations 
considered. However, as will be shown in a subsequent sec­
tion, such an approximation is still good enough to capture 
the depinning anomaly dependence on the geometrical prop­
erty of a system.

J. Phys. D: Appl. Phys. 50 (2017) 015004
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3.  Numerical validation

In this section, the analytical predictions are compared with 
numerical results and the validity of the theoretical model is 
discussed. The OOMMF simulation package [30] is used to 
perform the magnetization dynamics simulations. In the sim­
ulations, all nanowires are 2500 nm long, 160 nm wide and 
3 nm thick. The triangular notch is positioned at the centre of 
the nanowire with varying notch depth w1 and notch angle θ. 
The sample is discretized into 2 2 3× ×  nm3. The nanowire 
is parametrized with A 1 10 11= × −  J m−1, M 7 10s

5= ×  
A m−1, K 4.8 10a

5= ×  J m−3 and D 1.2 10 1= − × −  J m−2. 
The damping constant α is taken to be 0.3. A Néel DW is ini­
tially positioned at the centre of the notch. An external field 
is applied along the z direction in steps of 1 mT until the DW 
is completely depinned from the notch. The minimum static 
depinning field is denoted as hc

↓↑ for ↓↑ configuration and hc
↑↓ 

for ↑↓ respectively. The difference in static depinning field 
is obtained via h h hc c c∥ ∥|∆ |= |−|↓↑ ↑↓ . The difference in static 
depinning field is studied as a function of wire width for a fixed 
notch angle and as a function of notch angle for fixed width.

Figure 2 shows hc∆  as a function of notch angle θ with w1/w 
set as 0.5 for D  =  0 and 1.2 mJ m 2   − − . For the case D  =  0, the 
depinning anomaly vanishes. This confirms our theoretical 
prediction that the IDM interaction is responsible for the dif­
ference in static depinning field observed in Néel DW config­
uration with similar handedness. For notched nanowire with 
DM interaction, our simulation indicates that the difference 
in static depinning field increases with an increase in notch 
angle. In both cases, our theoretical estimate is in good agree­
ment with numerical results. For low angles, the discrepancy 
between the numerical results and theoretical estimates arises 
due to the assumption made in the theoretical derivation, i.e. 

we consider the DW deformation profile for both ↓↑ and ↑↓ 
magnetization to be the same as shown in figure 1. In reality, 
such assumption is a good approximation only for ↓↑ config­
uration, as the ↑↓ configuration will have its DW deformed 
significantly as shown in figure 3(b).

The depinning anomaly can be understood from the tilting 
of Néel DW which is induced by the IDM interaction. When 
driving the ↓↑ (↑↓) Néel DW along  +x direction, the DW will 
be tilted such that the top (bottom) edge DW leads the bottom 
(top) edge DW as shown in figure 3(b). In a notched nanowire 
where the ↓↑ DW is pinned at the edge of the notch, the leading 
DW will need to overcome the pinning potential before adopting 
the tilted DW structure as seen in uniform nanowire in its subse­
quent motion. On the other hand, when driving the ↑↓ Néel DW 
configuration along  +x direction, the DW will have its leading 
(trailing) DW at the bottom (top) edge. Thus for this case, the 
leading DW does not experience any pinning potential of the 
notch and is allowed to adopt its shape similar to the one in 
uniform nanowire except with its trailing DW experiencing pin­
ning potential. Figures 3(c)((i)–(iii)) show the normalised torque 
exerted on the DW by effective field heff which is represented 
in color map. As the DWs propagate, the magnetization on the 
left of the DW undergoes relaxation and experiences non-zero 
torque from the effective magnetic field, whereas the magnet­
ization on the right of the DW experiences vanishingly small 
torque. Prior adopting a tilted DW configuration that transverses 
with constant velocity, the leading DW will have a larger torque 
acting on it compared to the trailing DW. This implies that for 
a given fixed pinning potential, we would need a larger external 
field to produce the required torque to detach the ↑↓ DW from 
the notch as compared to ↓↑ DW. This is consistent with the 
numerical results shown in the inset of figure 2 where the static 
depinning field of ↑↓ DW has a large value compared to ↓↑ DW.

Figure 2.  Difference in depinning field for ↓↑ and ↑↓ DW configuration as a function of notch angle θ. Dots are the results of 
micromagnetic simulations, the continuous lines are the results of the theoretical estimates. The inset shows the depinning field of the 
aforementioned DW configurations for D  =  0 and 1.2mJ m 2 − − .

J. Phys. D: Appl. Phys. 50 (2017) 015004
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Figure 4 depicts hc∆  as a function of notch width θ for 
asymmetrical triangular notch, symmetrical notch and rec­
tangular notch. The numerical data for w1/w above 0.1 agrees 
with the theoretical estimate: the depinning field increases 
with decreasing w1/w. The intuitive picture for the depin­
ning field difference is related to the distance between the 
pinning site and the lower edge of the wire. Due to the DW 
tilting induced by the IDM, the leading edge of the DW, on 
the upper edge of the wire, will encounter the notch. For a 
fixed tilt DW angle, the lateral distance between the top edge 
of the DW at the notch and the lower edge of the DW at the 
wire will depend on the depth of the notch. The larger the 
depth of the notch, the smaller the lateral distance between 
the leading and trailing edge of the DW. As such, the depin­
ning field difference is lower for larger depth. When the lat­
eral distance between the two leading and trailing edge of 

the DW increases, the depinning field difference increases. 
That is why for low w1/w ratio, the theoretical trend shows 
an increase in the depinning field difference. The maximum 
lateral distance between the two DW edges will occur for the 
case of no notch in the wire. This may explain why theor­
etical estimate gives a finite value for w1/w  =  0 and this value 
is maximum. For w1/w  <  0.1, the depinning field difference 
decreases significantly. Such a trend is not replicated by the 
theoretical estimate. This is due to several assumptions made 
in our derivation. As such, our equation  is only valid for 
w1/w  >  0.1. One may observe that difference in static depin­
ning field is insensitive to the variation of w1/w ratio for a 
fixed notch angle. When the w1/w is varied from 0.2 to 0.6, 

hc∆  is changed only by 2 mT. This is an attractive feature for 
logic or memory application, as the variation of notch width 
does not affect the depinning efficiency greatly.

Figure 3.  (a) Tilting of Néel DW surface for both ↓↑ and ↑↓ configuration, (b) Néel DW shape adopted when it is marginally pinned. 
Dashed line indicates the Néel DW deformation profile assumed in our theoretical derivation. (c) (i)–(iii) Normalized torque acting on 
the Néel DW structure by the effective field during the depinning process. For ↓↑ (↑↓) DW configuration, the top (bottom) DW initially 
experiences a larger torque compared to the bottom (top) DW.

Figure 4.  Difference in depinning field for ↓↑ and ↑↓ DW configuration as a function of w1/w for a symmetrical triangular notch 
( 65θ α= = �), an asymmetrical triangular notch ( 75 , 45θ α= =� �) and a rectangular notch ( 90θ α= = �). Dots are the results of 
micromagnetic simulations, the continuous lines are the results of the theoretical estimates.
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4.  Effect of damping parameter α on depinning 
process

In our previous numerical simulations, a fixed damping 
constant of 0.3 is chosen. A good agreement is found between 
theoretical and simulation results. In this section, we show that 
the theoretical estimates derived in the previous section based 
on energy arguments fits only a selected range of α. Figure 5 
depicts the depinning field difference as a function of 0.3⩽α  
for both triangular and rectangular notches. For ⩾α  0.1, the 
depinning field difference is fairly constant irrespective of the 
type of notch. For α < 0.1, the difference in depinning field 
increases monotonically as a function of α. As α approaches 
zero, the depinning field difference between the different 
notch types becomes similar. Micromagnetic simulations 
reveal that the DW depinning dynamics for low α exhibit con­
siderable distortion as shown in figure  6. In our theoretical 
derivation, we assume the DW to be fairly rigid. The premature 
merging of DW and annihilation of domain at the nanowire 
edge as shown in figure 6(iii) is not taken into consideration. 

This assumption is only true when the damping constant is 
sufficiently high to inhibit excessive spin precession. Thus, 
our theoretical estimate is only valid for 0.1 0.3⩽ ⩽α .

We also study the depinning field of a DW in a rectan­
gularly notched nanowire with varying α from 0.01 to 1 as 
shown in figure 7. It is seen that the depinning field for ↑↓ DW 
is insensitive to the changes of α in the high damping regime 
( 0.4α> ). The depinning field for ↓↑ DW only reaches a 
constant value when the damping parameter α is 1.0. Also, the 
depinning field difference vanishes when the damping param­
eter approaches 1.0. To understand the underlying depinning 
mechanism, we have plotted figures  8 and 9 showing the 
torques exerted on DWs. From figure 8, ↓↑ DW experiences 
greater torque at the top edge when the damping parameter is 
small. This torque facilitates the depinning of DW from the 
notch. When a large damping parameter is used, it results in 
a fast relaxation of spin moments and smaller torque exerts 
on the DW as shown in figure 8. This leads to higher external 
field required to depin the DW from the notch. In the high 
damping parameter regime 1α = , the torque exerted on the 

Figure 5.  Difference in depinning field as a function of Gilbert damping parameter α for triangular notch and rectangular notch. The solid 
lines are theoretical estimates for triangularly notched nanowire and rectangularly notched nanowire respectively.

Figure 6.  The evolution of DW during the depinning process with damping parameter 0.05α = . The DWs is seen to undergo significant 
distortion and can no longer be treated as a rigid body.

J. Phys. D: Appl. Phys. 50 (2017) 015004
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Figure 7.  DWs’ depinning field as a function of Gilbert damping parameter α. As α approaches 1.0, the depinning field difference 
vanishes.

Figure 8.  Normalised torque acting on ↓↑ DW by effective field during the depinning process with damping parameter 0.3α =  and 1.0. 
The normalisation is based on the maximum torque exerted on magnetization in the magnetic system with 0.3α = .

Figure 9.  Normalised torque acting on ↑↓ DW by effective field during the depinning process with damping parameter 0.3α =  and 1.0. 
The normalisation is based on the maximum torque exerted on magnetization in the magnetic system with 0.3α = .

J. Phys. D: Appl. Phys. 50 (2017) 015004
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↓↑ leading DW is of the same magnitude as ↑↓ trailing DW. 
While our theoretical estimate is able to account for the geo­
metrical dependence of depinning anomaly but fails to cap­
ture the influence of damping parameter on the strength of 
depinning anomaly. For 0.3α> , the damping term dominates 
the DW dynamics. Our derived theoretical estimates is unable 
to provide a satisfactory fit to the simulation results due to 
the absence of a damping term. The influence of the damping 
constant can be included by starting the derivation from the 
LLG equation.

5.  Conclusion

To conclude, we demonstrate that the presence of 
Dzyaloshinskii–Moriya interaction leads to depinning 
anomaly in Néel DW with theoretical derivation and simu­
lation results. The difference in depinning fields is highly 
dependent on the angle of the notch. Our results reveal that the 
minimum difference in depinning field occurs for symmetric 
triangular pinning sites. The derived theoretical estimate man­
ages to explain the depinning anomaly for a particular range of 
damping constant where the assumption holds. The damping 
constant effect on depinning anomaly is explored.
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