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We analyze the topological charge of a skyrmion qs, and the corresponding Hall conductivity sxy, which
can serve as an electrical read-out for skyrmion-based memory. We derived the general form of the
Dzyaloshinskii–Moriya (DM) interaction for any arbitrary orientation of the DM vector D. Based on the
DM interaction energy, we obtained the dependence the skyrmion helicity angle γ on the orientation of
D . We showed via general mathematical arguments, the topological nature of the skyrmionic charge qs,
and its independence of γ and specific details of the interior of the skyrmion (e.g., its core size). Finally,
we showed via numerical micromagnetics the stability of qs under varying applied B-fields till the an-
nihilation field, despite the drastic reduction in the skyrmion core size.

& 2015 Elsevier B.V. All rights reserved.
Skyrmions, originally introduced as a model for hadrons in nu-
clear physics [1], are topological objects [2,3] associated with in-
teger invariants, known as their topological charge. Since this in-
variant is quantized, it is not subject to continuous change due to
smooth deformations in the system, thus conferring a high degree
of stability to the skyrmion. Skyrmion-like configurations have been
observed in magnetic materials, where there are competing inter-
action terms which result in the canting of the magnetization. In
magnetic thin films, the competition between magnetic anisotropy
in the perpendicular direction and magnetostatic energy which
favours in-plane configuration can lead to the formation of the so-
called giant skyrmions [4] of a few hundred microns in size. More
recently, smaller magnetic skyrmions of a few tens of nanometers
have been observed in various non-centrosymmetric magnets
which exhibit the Dzyaloshinskii–Moriya (DM) interaction, which is
a type of super-exchange mediated by ions with spin–orbit inter-
action [5,6]. Such DM-induced skyrmions have been reported in
helimagnets such as MnSi [7,8], FeGe [9,10] and Fe Co Six x1− [11], and
in multiferroic insulators such as Cu OSeO2 3 [12]. In view of their
compact size and robustness conferred by their topological prop-
erty [13–15], skyrmions have elicited much interest as possible
candidates for high-density memory elements. Furthermore, it has
been shown that current-induced motion of skyrmions can be in-
duced by current densities as low as 10 A/m5 5∼ [16,17], while
controlled writing and annihilation of individual skyrmions via spin
injection from a scanning tunneling microscope has also been
l and Computer Engineering,
3, Singapore 117576
demonstrated on PdFe bilayer on Ir(111) [18].
Although the presence of skyrmions can be characterized by

neutron scattering [8] and Lorentz microscopy [9], for memory
application, it would be useful to have an electrical read-out
method, especially one which is sensitive to the skyrmion's to-
pological charge qs. In this paper, we investigate the electrical
read-out based on the skyrmionic charge. First, we analyzed the
general DM interaction energy of a skyrmion for any arbitrary
orientation of the DM vector D. Based on the expression for the
DM interaction energy and assuming a skyrmion ring model, we
obtained the dependence the skyrmion helicity angle γ on the
orientation of D. Subsequently, we showed by general mathema-
tical arguments, the topological nature of the skyrmionic charge qs
and its independence of the helicity in any parameter space. The
topological nature of qs suggests the stability of any property
which is dependent on qs, such as the Hall conductivity sxy. We
performed exemplary micromagnetic simulation to show the ro-
bustness of qs under a perpendicular B-field, and hence the suit-
ability of utilizing the Hall conductivity sxy for electrical read-out
of skyrmion-based memory.
1. DM energy of skyrmions

First, we consider the different forms of the micromagnetic
energy density due to the DM interaction within a two-dimen-
sional magnetic skyrmion configuration as the orientation of the
DM vector D varies with respect to the plane of the skyrmion as
well as the separation vector between neighbouring moments. If
we denote the spatial texture of the skyrmion by n r( ), then its the
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free energy density ε can be written as [19]

n n w n HA K M , 1ex a Z DM u a s a DM
2 2ε ε ε ε ε ε∇= + + + = ( ) + ( · ) + ( · ) + ( )

where the first three terms correspond to the usual free energy
terms of standard micromagnetics in the continuum limit (namely,
the exchange, magnetocrystalline anisotropy and Zeeman energies)
[20,21]. Here, A is the exchange stiffness, Ku is the anisotropy con-
stant, wa is the easy axis direction, Ha is the applied magnetic field
and εDM is the DM interaction energy. The Hamiltonian of the
system is then given by the volume integral of ε [2].

To evaluate the form of εDM, we note that the DM interaction
causes canting between neighbouring moments and thus, the
discrete DM energy between nearest neighbours i and j can be
expressed as D n nDM

ij
i jε = ·( × ), where the DM vector D sets the axis

of spin canting. In terms of spatial derivatives, one can express the
interaction energy as

D n n D n r r n r , 2DM
ij

i ij i ij iε ∇= ·( × Δ ) = ·[ ( ) × ( · ) ( )] ( )

where rij is the separation vector. In the case where D rij∥^ , i.e.,

D rD ij= ^
∥ , and considering a 2D square lattice with nearest neigh-

bours at r x ya a,ij
^ = {± ^ ± ^}, we have
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where in the second line of the above we have added the null
(third) term, and D D a′ =∥ ∥ . The approximation in the first line of
Eq. (3) holds if the spin texture varies over a length-scale much
larger than a. The form of εDM in Eq. (3) is useful in the continuum
limit and is equivalent to the form given in Refs. [22] and [2].
Likewise, we can derive the continuum expression in the case
where D is perpendicular to rij but lying on the plane of atoms, i.e.,

D r zij∥( × ^). Summing over the four neighbours as before, we have
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where n nvj jkl l kε= ( × ∂ ) . This may be simplified to
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and so the DM energy in continuum form for the case of per-
pendicular DM vector is given by

n nD n n , 6DM z zε ∇ ∇= ′ [( · ) ] − ( · ) ( )⊥
⊥

where D D a′ =⊥ ⊥ .
2. Helicity of skyrmions

The helicity of a skyrmion describes the clockwise or antic-
lockwise twist of the magnetization orientation within the sky-
rmion about its core, and is characterized by the helicity angle γ
[2,23,24]. Based on the DM energetics discussed in the previous
section, we can derive the equilibrium skyrmion configuration
and, hence its helicity under varying orientation of the DM vector
D. We first express the unit vector n along the magnetization di-
rection (which denotes the spin texture of the skyrmion) in terms
of the polar and azimuthal spin angles, i.e.,

n r r r r rsin cos , sin sin , cos . 7θ ϕ θ ϕ θ= ( ( ) ( ) ( ) ( ) ( )) ( )

Due to the rotational symmetry of a general skyrmion configura-
tion, the spin angles θ and ϕ are functions of r and φ only, i.e.,

r rθ θ( ) = ( ) and rϕ ϕ φ( ) = ( ), where r, φ( ) are the spatial cylindrical
coordinates. In addition, the polar angle can be any smooth func-
tion which obeys the following boundary conditions:

⎧
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π
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where P 1= ± is the polarity, while the general form for the
azimuthal spin angle is Wϕ φ φ γ( ) = + , where W is an integer
signifying the winding number, and γ is the helicity angle. In this
paper, we will limit the discussion to skyrmions of unit winding
number. For the special helicity angles of γ¼0 and /2γ π= , the
skyrmion adopts the (outward) radial and (counter-clockwise)
vortex forms, respectively, which can be mapped to the regular
hedgehog or combed hedgehog on the unit Bloch sphere in spin
space [25].

We consider the DM interaction energy between a moment at
the centre of a skyrmion and a circular ring of neighbouring mo-
ments situated at rδ away in the radial direction. For simplicity, we
consider polarity P¼1, i.e., the polar angle at the centre is 0θ = ,
while that of the neighbours is rrδθ θ δ= (∂ ) . Therefore, the change in
the moment orientation over rrδ( ) ^ is n rcos , sin , 0 rϕ ϕ θ δΔ = ( )(∂ ) .
Now, suppose the DM vector is aligned within the plane of the
moments but at some angle ϑ to the separation direction r̂ , i.e.,
D D cos , sin , 0φ φ= ( ( + ϑ) ( + ϑ) ). Thus, following Eq. (2) and sum-
ming over the ring of neighbours, the total DM interaction energy is
given by

D n n d D r d
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d
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Supposing D 0> and W¼1, the DM energy is thus minimized when
/2γ π= ϑ + . Thus, when D r∥^, i.e., 0ϑ = , we have /2γ π= , which

corresponds to the counter-clockwise vortex skyrmion. Conversely,
for D r⊥^, i.e., /2πϑ = , γ π= , which corresponds to the inward radial
skyrmion. For D 0< , the direction and sense of rotation of the
skyrmions are reversed. Finally, if D is at some oblique angle to r̂ ,
then the resulting skyrmion would have intermediate degree of
helicity with 0 /2γ π< < . The dependence of the skyrmion helicity
to the direction of D is depicted in Fig. 1.
3. Skyrmionic charge and Hall conductivity

It has been shown both theoretically [15,26] and experimen-
tally [27,28] that an electron which traverses through a 2D sky-
rmionic texture (on the xy plane) and relaxes to the local mag-
netization direction n r( ) would experience an emergent out-of-
plane magnetic field:

⎜ ⎟⎛
⎝

⎞
⎠n n nB

S
dx dy

S
q4 ,

10t
z

x y s
0 0∫ ( )Φ π Φ= · ∂ × ∂ ≡

( )

where e/20Φ = is the flux quantum, S is the area of the skyrmion
and qs is the skyrmionic charge. The emergent field causes a
transverse deflection of electrons, resulting in an additional con-
tribution to the Hall conductivity sxy over and above the normal
Hall (due to applied B-field) and anomalous Hall (due to the net



Fig. 1. Dependence of the helicity of the skyrmion configurations on the direction
of DM vector D relative to the neighbour separation rij . (a), (b) and (c) correspond
to angles 0, /4, /2π πϑ = , between D and rij , which yield the helicity angles

/2, 3 /4,γ π π π= , respectively.
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perpendicular magnetization) contributions. By balancing the re-
sulting Lorentz force due to Bt

z and electrical force due to the
transverse E-field, it can be shown that e m PB/xy xx e t

zσ σ τ= ( ) [15],
where P is the spin polarization of the conduction electron (noting
that the topological field has opposite signs for electrons whose
spins are anti-aligned to the local moments). Equivalently, we have
a proportional relation between the Hall resistivity and the topo-
logical field, i.e.,

PB ne PR B/ / , 11xy xy xx t
z

H t
z2ρ σ σ≈ = = ( )

where R ne1/H = is the Hall constant. Thus, Hall conductivity/re-
sistivity measurement qxy sρ ∝ can serve as the read-out of the
topological state of skyrmion-based memory elements.

The skyrmionic charge qs as defined in Eq. (10) is thus an im-
portant parameter for an electrical read-out of a skyrmion mem-
ory state based on the topological Hall resistivity. We shall now
show on general mathematical grounds that qs, and hence the
topological field Bzt and Hall resistivity ρxy are independent of the
helicity angle γ. First, we transform the integrand in Eq. (10) to an
arbitrary 2D space characterized by coordinates p and q, as fol-
lows:

⎡
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⎤
⎦⎥n n n n n n

n n n
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p q
x y
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,
,
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∂( )

= · ∂ × ∂ ( )

where the term in the square brackets denotes the Jacobian of the
transformation. By choosing p q r, , φ( ) = ( ), i.e., the spatial cylindrical
coordinates, one obtains n n n n n ndx dy dr dx y r φ·(∂ × ∂ ) = ·(∂ × ∂ )φ .
Considering the general function representing a skyrmion texture
[i.e., r rr W,θ θ ϕ φ γ( ) = ( ) ( ) = + ], we have
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where the last equality follows from Eq. (7). By substituting the
results in Eqs. (12) and (13) into the definition of the skyrmionic
charge in Eq. (10), we thus have
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where R is the radius of the skyrmionic element. Thus, for an ideal
skyrmion, its charge qs is independent of the helicity factor γ. qs also
depends only on the polar angle at the boundaries r¼0 and r¼R,
and is independent of the specific skyrmion texture within the
element itself. This universality hints at the topological nature of qs.
To illustrate this further, one can choose p q, ,θ φ( ) = ( ) in Eq. (12),
i.e., the coordinates defining the surface of the unit sphere in spin
space. In this case,

n n n n n n d d d d dsin , 15x y s( ) ( ) θ ϕ θ θ ϕ Ω· ∂ × ∂ = · ∂ × ∂ = = ( )θ ϕ

which is none other than the differential solid angle in spin space.
Thus, integrating over ,θ ϕ( ), one finds that q d4 s s s∫π Ω Ω= = , which
is the solid angle subtended by the skyrmion texture in spin space.
For an ideal skyrmion of infinite extent, i.e., R → ∞, WsΩ = , the
winding number, i.e., the number of times the texture winds around
the unit Bloch sphere. Hence, the Hall resistivity due to the sky-
rmionic texture Wxy sρ Ω∝ = is related to a quantized topological
invariant W, and thus resistant to small fluctuations.

As mentioned earlier, the skyrmionic charge qs and hence the Hall
read-out sxy are only dependent on the magnetization at the centre
r 0( = ) and at the element boundary r R( = ), and independent of the
specific skyrmion configuration (e.g., its core size and helicity) in the
interior of the element. In other words, qs and sxy are the same for
any function rθ ( ), as long as it varies smoothly with r and obeys the
boundary conditions θ¼0, and Rθ ( ) at the centre and edge, respec-
tively. This can be seen analytically by considering the corresponding
magnetic vector potential of the topological field Bt, which is given by
A rt ( ) = rS/2 1 cos0Φ θ ϕ( )( − ( ))∇ , [15]. By applying Stoke's theorem,
Eq. (10) simplifies to a line integral around the element boundary:

A rd S R d W S R/2 1 cos / 1 cost 0 0∮ ∮Φ θ ϕ π Φ θ· = ( )[ − ( )] = ( )[ − ( )],
which is consistent with Eq. (14).
4. Micromagnetic simulation of qs

Based on the analysis of the previous section, we find that qs and
hence, any read-out based on it, would be highly robust as long as
we can pin the magnetization at the centre and boundary of the
skyrmion element. For a numerical test of the robustness of qs, we
perform micromagnetic simulation on a skyrmionic disk element
under an applied B-field in the perpendicular (z) direction, and
opposite to the magnetization of the skyrmion core. In this set-up,
the skyrmion boundary which is magnetized along the field direc-
tion would be stabilized by Zeeman interaction, while the magne-
tization of the skyrmion core is stabilized by the large exchange
field required to reverse it. The micromagnetic simulation is per-
formed over a range of applied field strength up to the annihilation
field of the skyrmion, i.e., the field strength at which the core is
switched to yield a uniform domain along the field direction. We
show that despite the drastic reduction in the skyrmion core radius
a as the B-field is increased, the corresponding charge qs remains
stable until close to the annihilation field of the skyrmion.



Fig. 2. (Main) Calculated skyrmionic charge qs of steady state skyrmion config-
urations under different B-field. Labels 1, 2 and 3 refer to three different field
strengths of 90, 360 and 450 mT, respectively. The insets show the configurations at
the three field values. Red (blue) regions denote magnetization in the þz (�z)
directions. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this paper.)
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The micromagnetic simulation was performed based on the
OOMMF code [29], modified to include the DM interaction [30].
We assume typical magnetic parameters: D 1.2 mJ/m2= ,
K 370 kJ/mu

3= , A 9 10 J/m12= × − , and M 800 kA/ms = , and con-
sider elements of 50 nm in radius and 1 nm in thickness. The in-
itial magnetization is set to the skyrmion configuration described
by r a r a rcos /2 2 2 2θ ( ) = ( − ) ( + ), and γ¼0 (i.e., radial skyrmion), and
then relaxed under a uniform field applied in the �z direction.
The field strength is varied from 0 to 450 mT. At each field value,
the charge qs as defined in Eq. (10) is numerically calculated based
on the steady state configuration n r( ). As can be seen from the
insets of Fig. 2, the skyrmion radius is much reduced in size as the
B-field value is increased to 360 mT, before disappearing (annhi-
lation) at 450 mT. However, the value of qs remains relatively
stable and close to the ideal value of unity q 0.9s( ≈ ) over a wide
range of field strength. There is a small reduction in qs from 1.0 to
about 0.9 when the B-field is increased between 60 and 120 mT,
due to a slight canting of spins close to the centre. However, as the
field is increased further up to 360 mT, the overall skyrmion
configuration and hence qs hold stable even though the core radius
undergoes a drastic reduction by a factor of around 5. It is only
when the skyrmion is finally switched to the topologically trivial
uniform domain at B¼450 mT that qs drops sharply to 0.

By assuming an ideal skyrmion configuration one can obtain
the corresponding fields associated with the energy terms in Eq.
(1), namely the exchange, anisotropy and DM fields (in the z-di-
rection and taken at the skyrmion centre):

⎜ ⎟⎛
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where the demagnetizing factor can be taken to be N 1z ≈ for a
thin disk. Assuming a 7.5≈ nm, which correspond to the critical
radius A D/ex∼ , the numerical field values are B 0.4 Tex

z ≈ ,
B 0.08 TK

z ≈ − , and B 0.2 TDM
z ≈ . Thus, the required field to over-

come these fields and switch (annihilate) the skyrmion core is
0.5 T≈ , which is reasonably close to the numerical value of 420 mT.
The relative stiffness of the skyrmion core up to a relatively large
field value would ensure the skyrmionic read-out via Hall con-
ductivity to be robust and undisturbed by stray fields.

In summary, we have analyzed the DM interaction energy of a
skyrmion for varying orientation of the DM vector D. Based on the
DM interaction and assuming a skyrmion model consisting of a
ring of neighbouring moments, we showed the relation between
the orientation of D and the skyrmion helicity angle γ. We then
show the topological nature of the skyrmionic charge qs and its
independence of the helicity via general mathematical arguments.
The topological nature of qs suggests the stability of any property
which is dependent on qs, such as the Hall conductivity sxy. We
show via an exemplary micromagnetic simulation the robustness
of qs under a perpendicular B-field, and hence the suitability of
utilizing the Hall conductivity sxy for the read-out of skyrmion-
based memory.
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