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Abstract. In this work, we present a systematic investigation of the domain wall spin structure 
and notch geometries on the pinning field strength.  We observed that for transverse domain 
wall, pinning is strongly dependent on the transversely varying energy profile of the wall.  
Domain walls are pinned at notches only when the notch provides a barrier to the higher 
energy component of the domain wall.  For all notch shapes investigated, we observed that 
when the notch height/nanowire width > 0.3, the depinning field reaches a maximum and 
remains constant.  We also note that the pinning of a domain wall at a notch is markedly 
sensitive to the angle of the notch with respect to the domain wall. 

1. Introduction 
Magnetic domain walls in ferromagnetic nanowires are the focus of intense interest both from a 
fundamental perspective and due to their potential applications. Magnetic logic [1] and memory 
devices [2] based on domain wall (DW) motion and manipulation have been recently proposed and 
experimentally demonstrated.    A key issue in the application of DW devices is the ability to 
manipulate the DW configurations using magnetic field [3,4] or spin polarized current [5,6]. As such, 
a detailed knowledge of the DW nucleation and propagation is needed.   The control and manipulation 
of magnetic domain walls are the focus of intense research.  Deliberately fabricated defects in 
ferromagnetic nanowires allow for the control of the position of DW as they create changes in the 
energy landscape which increase the propagation field.   Artificial nanowire (NW) defect of different 
geometries acting as trapping sites have been investigated using both numerical simulation and 
experimental observations [7-10].   The strength of the pinning is directly correlated with the wall spin 
structure so that only the determination of its nanoscale spin structure will enable an in-depth 
understanding of the energetics governing the pinning strength.  However, a detailed description of the 
pinning effect at the notch is still lacking.   

In this work we present a systematic study on the propagation and pinning of transverse 
domain wall on the wall spin structure and notch geometry in nanowires.  We observed that domain 
wall pinning is strongly dependent on the transversely varying energy profile of the wall.  The pinning 
effect is highly effective when the notch provides a potential well to the higher energy component of 
the domain wall. For notch height/wire width > 0.3, the depinning field for the domain wall remains 
constant irrespective of the notch shape.  We also observed that the angle of the notch with respect to 
the domain wall greatly determines the pinning strength of the notch.  
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2. Micromagnetic Simulation 
The magnetization configuration  and depinning processes were simulated using the Object Oriented 
Micromagnetic Framework (OOMMF) simulation software [11].  Domain wall pinning was simulated 
for a planar nanowire with various notch geometries and configurations.  The structure simulated 
comprised of a large nucleation pad followed by a nanowire with a pointed end as seen in the 
schematic shown in Fig 1.   The nanowire was 2um in length and 200 nm wide. The structure also 
comprises of a wire along the y-direction.  This wire acts as a chirality filter to set the orientation of 
the transverse component of the domain wall generated.    The position of the notch was set at 1um 
from the filter.  The film thickness was maintained at 10nm.  For the simulation, the parameters for 
Permalloy were used; saturation magnetization, Ms = 860 x 103 A/m, exchange constant, A = 1.3 x 10-

11 J/m, with a cell size of 5 nm.  The magnetocrystalline anisotropy was set to zero. 

 
  
 For all the simulated geometries and domain wall type, a field of 1 kOe was applied along the 
positive(negative) x-direction to saturate the nanowire and then reduced to zero.  This was followed by 
the application of small field of (-)200 Oe along the y-direction to set the orientation of the filter.  The 
field was then increased incrementally in the x-direction to generate a domain wall in the wire.  To 
obtain an accurate depinning field, the simulation parameters for the while were set, so that each step 
corresponds to a change of 0.5 Oe.   

3. Results and Discussion 

3.1. Domain Wall Chirality 
In this section, we investigate the influence of domain wall spin structure on the pinning strength at 
notches along the nanowire. Four type of transverse domain walls (TDW) were generated during the 
simulation; Head-to-Head (HH) or Tail-to-Tail (TT) configuration with an “Up” or “Down” chirality 
as shown in Fig 2(a).   The triangle encompassing the y-component of the wall, Fig 2(a), depicts how 
the transverse spin components are aligned within the TDW.   
  For this simulation, a triangular notch with notch width, NW and height, NH set at 66nm (∼1/3 of 
nanowire width) was chosen.  Three different types of notch configuration were investigated; with the 
notch positioned at the upper edge or/and lower edge of the nanowire as seen in Fig 2(b).  The 
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depinning fields, as extracted from the simulation, for the different types of TDW and notch 
configurations are shown in Fig 2(b).  In our simulation, the field needed to inject a domain wall into 
the nanowire was (-)100 Oe. At this field, some DW simply passed through the notch without any 
evidence of pinning.  For these DWs, we have set the depinning field to be equal to the nucleation 
field of (-)100 Oe. 

 
 
When the notch is on the upper edge of the nanowire, Fig 2(b)-1, we note that the TDW with 

Tail-to-Tail with “Down” chirality (TT-D) and Head-to-Head with “Up” chirality (HH-U) are pinned.   
For both these wall, TT-D and HH-U, the field needed to depin from the notch has the same 
magnitude of 257.5 Oe.  On the otherhand, the TT-U and HH-D simply passed through the notch.     

For the notch on the lower edge of the nanowire, Fig 2(b)-2, we observed a reversal in the 
pinning in the TDW.  In this case, the TT-U and HH-D are pinned at the notch, while requiring the 
same exact field of 257.5 Oe to depin from the notch.  The HH-D and TT-U walls passed through the 
notch.  For a double notch configuration, Fig 2(b)-3, we observed that all the TDWs are pinned and 
required a field of 262.5 Oe to depin. Interestingly, the field needed to depin the wall is marginally 
larger as compared to the field of single notch configuration by 5 Oe, an increase of less than 2%.   

As the notch acts as a potential well, since all the TDWs have the same depinning field for a 
double notch geometry, this implies that all the TDWs configuration have the same total energy. The 
energy profile of the TDWs though may be different, as evidenced from the pinning of domain wall 
pairs at the notches on the lower and upper edge of the nanowire. 

To better understand this result, we look into the energies of the domain wall.  From the 
domain wall theory, the energy of the domain wall, EDW is given by [13]: 

2

DW
AE Kπ
+ ∂

∂
     (1) 

where A is the exchange stiffness constant, K is the anisotropy energy density and δ is the wall 
thickness.  The domain wall thickness, δ, is a function of the number of planes (N) over which the 
magnetization rotates and the lattice constant (a). As such, for the transverse domain wall, δ vary as 
function of the width of the transverse component of magnetization, which has a triangular shape as 
seen in Fig 2(a).  Thus, all the TDWs have the  same energy but their transverse energy profile varies 
as a function on their specific spin structure.  Due to the triangular shape of the transverse component 
of the TDW, the energy of the wall varies along the y-direction, with the base of the wall (triangle) 
having the highest energy.  From Fig 2(b), we note that pinning is effective only when the notch 
provides a potential barier to the highest energy component of the domain wall.   
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3.2. Geometry Dependence 
To gain a better understanding of the pinning mechanism in the nanowire structures, we have 
investigated of the notch geometry on the pinning field of the nanowires.  For comparison, the notch 
depth was set to 66nm, while the notch width on the upper edge of the nanowire was kept at 133nm.  
Shown in Fig 3 is the depinning field for a Tail-to-Tail “Down” chirality (TT-D) transverse domain 
wall for all the different geometries.  We observed that the depinning field is highly dependent on the 
geometry of the notch.  The depinning field ranged from 212.5 Oe for a trapezoidal shaped notch to a 
maximum of 228 Oe for a triangular notch.     
 

 

3.3. Height and Width Variation 
The depinning field has been predicted to increase with decreasing constriction width, implying that 
walls in narrower constriction are more strongly pinned [14,15].  In this section, we investigate the 
effect of different notch heights on  the depinning field of DWs that are trapped at a notch.  For this set 
of simulations, we have investigated the depinning field of a Tail-to-Tail TDW with “Down” chirality, 
TT-D at a notch on the upper edge of the nanowire.  Four notch geometries as discussed in section 3.2 
were investigated.  In Fig 4(a), we present the plot of the depinning field as a function of the notch 
height,NH  to nanowire width, NWW ratio, NH/NWW.  For all the geometries investigated, we observed 
that the depinning field increases with the notch height, until a NH/NWW ratio of 0.3.  Beyond this 
ratio, the depinning field remains constant, irrespective of the notch height and geometry.  This is in 
contradiction of the assumption that as notch height increases, the depinning strength should increase.  
Our result, can be explained by looking at the energy profile of the TDW.  As the transverse spin 
structure adopts the shape of an isoceles triangle, a height of 0.3 from the base of the wall, correspond 
to an area containing almost 50% of the wall energy.   From section 3.1, in the double notch 
configuration, we have shown that once the higher energy component of the wall is impeded, the 
pinning of the lower energy component results in marginal increase in the depinning field. 

We have further investigated the effect of the notch width on the depinning field of the 
domain wall.   In Fig 4(b), we present the plot of the depinning field of a transverse down Tail-to-Tail 
(TT-D) DW for different notch geometries, as a function of the notch width to wire width, while the 
notch height is kept fixed.  We observed a non-monotonic variation of the depinning field, with a 
maximum field 277Oe occurring at a NW/NWW ratio of 0.65.  Further increase in the notch width leads 
to a gradual decrease of the depinning field until a NW/NWW of 1.5.  Beyond this NW/NWW, the wall 
just passes through the notch with a depinning field of 100 Oe.  This can be explained by the fact that 
the potential landscape as induced by the notch changes as the notch width increases.  The notch can 
be seen as acting as an abrupt energy barrier to the domain wall.  An increase in the notch width while 
maintaining fixed notch height, leads a gradual change in the width of the wire at the notch, as seen in 
the inset of Fig 4(b).  Thus the angle of the notch with respect to the domain wall decreases, leading to 
a smoother change in the energy barrier.  For the rectangular notch, an almost constant depinning field 
of 210 Oe is obtained for NW/NWW > 0.5.  This can be explained by the fact that, for the rectangular 
geometry, the angle of the notch remains fixed irrespective of the notch width.          
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4. Conclusion 
In summary, we have investigated the depinning of transverse domain wall at notches of different 
geometry and shapes.  We note that the pinning of a domain wall at a notch is highly dependent on the 
energy profile of the domain wall.  The pinning of a domain wall by a notch is most effective when the 
notch acts as a potential barrier to the higher energy component of the domain wall.  We observed that 
depinning field strength does not scale with the notch height.  Beyond a height to wire width ratio of 
0.3, the depinning field remains constant.  As regards to the width of the notch, we observed that the 
angle of the notch with respect to the domain wall determines the strength of the depinning field.  The 
smaller the angle, the gradual is the change in the potential landscape, resulting in a decrease in the 
depinning field. 
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